Home  Guidelines for Reviewers About the Journal News Editorial Board Aims & Scope Subscription Contact us Announcement Peer Review Policy Content
 
Early Edition  //  Current Issue  //  Archives  //  Most Read
Online ISSN: 2414-3421
  About the Journal
    » About Journal
    » Editorial Board
  Authors
    » Online Submission
    » Guidelines for Authors
    » Download Templates
    » Copyright Agreement
  Reviewers
    » Guidelines for Reviewers
    » Online Peer Review
    » Online Editor Work
  Editorial Office
  Virtual Special Issues
     Porphyrins

Default Latest Most Read
Please wait a minute...
For Selected: Toggle Thumbnails
Steric Hindrance Functionalized Porphyrins as Charge Trapping Elements for Organic Field Effect Transistor Memory
Meng Xie, Linyi Bian, Hao Chong, Zhewei Zhang, Guangyi Liu, and Linghai Xie
General Chemistry    2022, 8 (3-4): 220006-220006.   DOI: 10.21127/yaoyigc20220006
Abstract442)      PDF (1162KB)(169)       Save
Two novel fluorenyl-porphyrins 2Flu-TPP and 4Flu-TPP serving as charge trapping elements are designed and synthesized through BF 3.Et 2O catalyzed Friedel-Crafts reaction. With steric hindrance building blocks of fluorene units, 2Flu-TPP and 4Flu-TPP present highly nonplanar 3-dimensional structure, which could effectively inhibit molecular packing and intermolecular arrangement of porphyrins. As charge trapping elements, porphyrin groups provide the hole trapping sites, while fluorene units act as a hole blocking group to reduce the formation of leakage current paths. The pentacene-based organic field effect transistor memory devices based on 2Flu-TPP and 4Flu-TPP show memory windows of 48.93 and 49.20 V, respectively. The 2Flu-TPP device shows reliable endurance property with a large ON/OFF current ratio (1.1×10 7) and good charge retention time (2.41×10 5 after 2×10 3 s). This study suggests that porphyrin based steric hindrance small molecular elements have great promise for high-performance organic field effect transistor memory.
Related Articles | Metrics
La(OTf) 3-Catalyzed Synthesis of Nickel(II) β-Iminoporphyrins and Their Conversion to β-Substituted Porphyrin-Thiazolidinone Hybrids
Ranjan K Bhatt, Pargat Singh, Raju Tiwari, and Mahendra Nath
General Chemistry    DOI: 10.21127/yaoyigc20200020
Online available: 25 January 2021

沪ICP备15041762号-2
Copyright © General Chemistry, All Rights Reserved.
Address: 425 East 76th Street, Apt 9E, New York, NY, 10021, United States