[1] Jiao, S.; Wang, J.; Shen, Q.; Li, Y.; Zhong, X. Surface Engineering of PbS Quantum Qot Sensitized Solar Cells with a Conversion Efficiency Exceeding 7%. J. Mater. Chem. A 2016, 4, 7214–7221.
[2] Shen, T.; Bian, L.; Li, B.; Zheng, K.; Pullerits, T.; Tian, J. A Atructure of CdS/CuxS Quantum Qots Sensitized Solar Cells. Appl. Phys. Lett. 2016, 108, 213901–213905.
[3] Mora-Seró, I. Current Challenges in the Development of Quantum Dot Sensitized Solar Cells. Adv. Energy Mater. 2020, 10, 1614–1632.
[4] Yuan, D.; Xiao, L.; Luo, J.; Luo, Y.; Meng, Q.; Mao, B. W.; Zhan, D. High-Throughput Screening and Optimization of Binary Quantum Dots Cosensitized Solar Cell. ACS Appl. Mater. Interfaces 2016, 8, 18150–18156.
[5] Zhang, L.; Pan, Z.; Wang, W.; Du, J.; Ren, Z.; Shen, Q.; Zhong, X. Copper Deficient Zn-Cu-In-Se Quantum Qot Sensitized Solar Cells for High Efficiency. J. Mater. Chem. A 2017, 5, 21442–21451.
[6] Pan, Z.; Mora-Sero, I.; Shen, Q.; Zhang, H.; Li, Y.; Zhao, K.; Wang, J.; Zhong, X.; Bisquert, J. High-Efficiency "Green" Quantum Dot Solar Cells. J. Am. Chem. Soc. 2014, 136, 9203–9210.
[7] Liu, S.; Fan, R.; Zhao, Y.; Yu, M.; Fu, Y.; Li, L.; Li, Q.; Liang, B.; Zhang, W. Assembly of Cu-In-Sn-Se Quantum Qot-Sensitized TiO2 Films for Efficient Quantum Qot-Sensitized Solar Cell Application. Mater. Today Energy 2021, 21, 110798–110805.
[8] Zhao, K.; Pan, Z.; Zhong, X. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells. J. Phy. Chem. Lett. 2016, 7, 406–417.
[9] Amani-Ghadim, A. R.; Mousavi, M.; Bayat, F. Dysprosium Doping in CdTe@CdS Type II Core/Shell and Cosensitizing with CdSe for Photocurrent and Efficiency Enhancement in Quantum Qot Sensitized Solar Cells. J. Power Sources 2022, 10, 53751–71379.
[10] Song, H.; Lin, Y.; Zhou, M.; Rao, H.; Pan, Z.; Zhong, X. Zn-Cu- In-S-Se Quinary "Green" Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4%. Angew. Chem. Int. Ed. Engl. 2021, 60, 6137–6144.
[11] Boles, M. A.; Engel, M.; Talapin, D. V. Self-Assembly of Colloidal Nanocrystals: from Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289.
[12] Wang, W.; Rao, H.; Fang, W.; Zhang, H.; Zhou, M.; Pan, Z.; Zhong, X. MOF-Derived CuxS Double-Faced-Decorated Carbon Nanosheets as High-Performance and Stable Counter Electrodes for Quantum Qots Solar Cells. J. Phys. Chem. Lett. 2019, 10, 229–237.
[13] Zhang, H.; Fang, W.; Wang, W.; Qian, N.; Ji, X. Highly Efficient Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells Through Surface Capping with Ascorbic Acid. ACS Appl. Mater. Int. 2019, 11, 6927–6936.
[14] Du, Z.; Zhang, H.; Bao, H.; Zhong, X. Optimization of TiO2 Photoanode Films for Highly Efficient Quantum Dot-Sensitized Solar Cells. J. Mater. Chem. A 2014, 2, 2–19.
[15] Halder, G.; Ghosh, D.; Ali, M. Y.; Sahasrabudhe, A.; Bhattacharyya, S. Interface Engineering in Quantum-Dot- Sensitized Solar Cells. Langmuir 2018, 34, 10197–10216.
[16] Becker, M. A.; Radich, E. J.; Bunker, B. A.; Kamat, P. V. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1575–1582.
[17] Zhao, H.; Huang, F.; Hou, J.; Liu, Z.; Wu, Q.; Cao, H.; Jing, Q.; Peng, S.; Cao, G. Efficiency Enhancement of Quantum Dot Sensitized TiO2/ZnO Nanorod Arrays Solar Cells by Plasmonic Ag Nanoparticles. ACS. Appl. Mater. Interfaces 2016, 8, 26675–26682.
[18] Song, H.; Lin, Y.; Zhang, Z.; Rao, H.; Wang, W.; Fang, Y.; Pan, Z.; Zhong, X. Improving the Efficiency of Quantum Dot Sensitized Solar Cells Beyond 15% via Secondary Deposition. J. Am. Chem. Soc. 2021, 143, 4790–4800.
[19] Wang, W.; Feng, W.; Du, J.; Xue, W.; Zhang, L.; Zhao, L.; Li, Y.; Zhong, X. Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12%. J. Mater. Chem. A 2018, 30, 1705746–1705755.
[20] Pan, Z.; Yue, L.; Rao, H.; Zhang, J.; Zhong, X.; Zhu, Z.; Jen, A. K. Boosting the Performance of Environmentally Friendly Quantum Dot-Sensitized Solar Cells Over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. Adv. Mater. 2019, 31, 1903696–1903704.
[21] Rao, H.; Zhou, M.; Pan, Z.; Zhong, X. Selenium Cooperated Polysulfide Electrolyte for Efficiency Enhancement of Quantum Qot-Sensitized Solar Cells. J. Mater. Chem. A 2020, 8, 2050–7488.
[22] Wang, W.; Zhao, L.; Wang, Y.; Xue, W.; He, F.; Xie, Y.; Li, Y. Facile Secondary Deposition for Improving Quantum Dot Loading in Fabricating Quantum Dot Solar Cells. J. Am. Chem. Soc. 2019, 141, 4300–4307.
[23] Yu, J.; Wang, W.; Pan, Z.; Du, J.; Ren, Z.; Xue, W.; Zhong, X. Quantum Qot Sensitized Solar Cells with Efficiency over 12% Based on Tetraethyl Orthosilicate Additive in Polysulfide Electrolyte. J. Am. Chem. Soc. 2017, 5, 14124–14133.
[24] Yin, F.; Zou, X.; Chen, M.; Sun, Z.; Bao, X.; Du, Z.; Tang, J. Promoting the Efficiency of Quantum Qots-Based Solar Cells via the CuZnSeS Intermediate Passivation Layer. J. Mater. Res. Technol. 2022, 21, 1974–1983.
[25] Li, W.; Zhong, X. Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells. J. Phys. Chem. Lett. 2015, 6, 796–806.
[26] Zhang, Z.; Song, H.; Wang, W.; Rao, H.; Fang, Y.; Pan, Z.; Zhong, X. Dual Ligand Capped Quantum Dots Improving Loading Amount for High-Efficiency Quantum Dot-Sensitized Solar Cells. ACS Energy Lett. 2022, 8, 647–656.
[27] Song, H.; Rao, H.; Zhong, X. Recent Advances in Electrolytes for Quantum Qot-Sensitized Solar Cells. J. Mater. Chem. A 2018, 6, 4895–4911.
[28] Du, Z.; Chen, M.; Yin, F.; Jiang, H.; Wang, J.; Tang, J. Synergistic Combination of TiO2-sol Interconnecting-Modified Photoanode with Alginate Hydrogel-Assisted Electrolyte for Quantum Dots Sensitized Solar Cells. Sol. Energy 2021, 215, 189–197.
[29] Zhou, M.; Shen, G.; Pan, Z.; Zhong, X. Selenium Cooperated Polysulfide Electrolyte for Efficiency Enhancement of Quantum Qot-Sensitized Solar Cells. J. Chem. Energy 2019, 38, 147–152.
[30] Chen, M.; Yin, F.; Du, Z.; Sun, Z.; Zou, X.; Bao, X.; Pan, Z.; Tang, J. MOF-Derived CuxS Double-Faced-Decorated Carbon Nanosheets as High-Performance and Stable Counter Electrodes for Quantum Qots Solar Cells. J. Colloid Interf. Sci. 2022, 628, 22–30.
[31] Du, Z.; Pan, Z.; Fabregat-Santiago, F.; Zhao, K.; Long, D.; Zhang, H.; Zhao, Y.; Zhong, X.; Yu, J. S.; Bisquert, J. Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%. J. Phys. Chem. Lett. 2016, 7, 3103–3111.
[32] Tian, Z.; Chen, Q.; Zhong, Q. Honeycomb Spherical 1T-MoS2 as Efficient Counter Electrodes for Quantum Qot Sensitized Solar Cells. Chem. Eng. J. 2020, 396, 125374–125381.
[33] Shen, C. Recent Developments in Counter Electrode Materials for Quantum Dot-Sensitized Solar Cells. J. Nanosci Nanotechnol. 2019, 19, 1–11.
[34] Wang, S.; Tian, J. Inorganic Ligand Thiosulfate Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells. RSC Adv. 2016, 6, 2046–2069.
[35] Zhang, H.; Wang, C.; Peng, W.; Yang, C.; Zhong, X. Quantum Qot Sensitized Solar Cells with Efficiency up to 8.7% Based on Heavily Copper-Deficient Copper Selenide Counter Electrode. RSC Adv. 2016, 23, 60–69.
[36] Zhang, T.; Zhang, Q.; Li, Q.; Li, F.; Xu, L. Enhanced Catalytic CuCo2Se4/g-C3N4 Nano-Composites as Counter Electrodes for High-performance Quantum Qot Sensitized Solar Cells. Nano Energy 2023, 454, 140518–140530.
[37] Du, Z.; Liu, M.; Li, Y.; Chen, Y.; Zhong, X. Titanium Mesh Based Fully Flexible Highly Efficient Quantum Qots Sensitized Solar Cells. Chem. Eng. J. 2017, 5, 5577–5584.
[38] Chen, H.; Sun, F.; Wang, J.; Li, W.; Qiao, W.; Ling, L.; Long, D. Nitrogen Doping Effects on the Physical and Chemical Properties of Mesoporous Carbons. J. Mater. Chem. A 2013, 117, 8318–8328.
[39] Jiao, S.; Du, J.; Du, Z.; Long, D.; Jiang, W.; Pan, Z.; Li, Y.; Zhong, X. Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%. J. Phys. Chem. Lett. 2017, 8, 559–564.
[40] Li, W.; Zhang, S.; Chen, Q.; Zhong, Q. Highly-Dispersed CoS2/N-Doped Carbon Nanoparticles Anchored on RGO Skeleton as a Hierarchical Composite Counter Electrode for Quantum Dot Sensitized Solar Cells. Chem. Eng. J. 2022, 430, 132732–132741.
[41] Du, Z.; Tong, J.; Guo, W.; Zhang, H.; Zhong, X. Cuprous Sulfide on Ni Foam as a Counter Electrode for Flexible Quantum Dot Sensitized Solar Cells. J. Mater. Chem. A 2016, 4, 11754–11761.
[42] Yue, L.; Rao, H.; Du, J.; Pan, Z.; Yu, J.; Zhong, X. Comparative Advantages of Zn-Cu-In-S Alloy QDs in the Construction of Quantum Dot-Sensitized Solar Cells. RSC Adv. 2018, 8, 3637–3645.
[43] Li, Z.; Pan, Z.; Zhong, X. Recent Development of Quantum Dot Deposition in Quantum Dot-Sensitized Solar Cells. Trans. Tianjin Univ. 2022, 28, 374–384. |