[1] Pardo E.; Train C.; Gontard G.; Boubekeur K.; Fabelo O.; Liu H.; Dkhil B.; Lloret F.; Nakagawa K.; Tokoro H.; Ohkoshi S.-i.; Verdaguer, M. High Proton Conduction in a Chiral Ferromagnetic Metal-Organic Quartz-like Framework. [J]. Am. Chem. Soc. 2011, 133, 15328-15331.
[2] Zhang T.; Lin W.Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982-5993.
[3] Zhu J.; Li P.-Z.; Guo W.; Zhao Y.; Zou R.Titanium-based metal-organic frameworks for photocatalytic applications. Coord. Chem. Rev. 2018, 359, 80-101.
[4] Ding M.; Flaig R. W.; Jiang H.-L.; Yaghi O. M.Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783-2828.
[5] Zhou H.-C.J.; Kitagawa, S. Metal-Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.
[6] Meng X.; Wang H.-N.; Song S.-Y.; Zhang H.-J.Proton- conducting crystalline porous materials. Chem. Soc. Rev. 2017, 46, 464-480.
[7] Canivet J.; Fateeva A.; Guo Y.; Coasne B.; Farrusseng D.Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 2014, 43, 5594-5617.
[8] Kempahanumakkagari S.; Vellingiri K.; Deep A.; Kwon E. E.; Bolan N.; Kim K.-H.Metal-organic framework composites as electrocatalysts for electrochemical sensing applications. Coord. Chem. Rev. 2018, 357, 105-129.
[9] Hu Z.; Deibert B. J.; Li J.Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-5840.
[10] Ahmed I.; Jhung S. H.Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions. Chem. Eng. J. 2017, 310, 197-215.
[11] Van de Voorde, B.; Bueken, B.; Denayer, J.; De Vos, D. Adsorptive separation on metal-organic frameworks in the liquid phase. Chem. Soc. Rev. 2014, 43, 5766-5788.
[12] Falcaro P.; Ricco R.; Doherty C. M.; Liang K.; Hill A. J.; Styles M. J.MOF positioning technology and device fabrication. Chem. Soc. Rev. 2014, 43, 5513-5560.
[13] Zhao S.-N.; Song X.-Z.; Song S.-Y.; Zhang H.-j. Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coord. Chem. Rev. 2017, 337, 80-96.
[14] Xiao Q.; Li X.; Li Y.; Wu Z.; Xu C.; Chen Z.; He W.Biological drug and drug delivery-mediated immunotherapy. Acta Pharm. Sin. B 2021, 11, 941-960.
[15] Yuan S.; Feng L.; Wang K.; Pang J.; Bosch M.; Lollar C.; Sun Y.; Qin J.; Yang X.; Zhang P.; Wang Q.; Zou L.; Zhang Y.; Zhang L.; Fang Y.; Li J.; Zhou H.-C.Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, 1704303.
[16] Wang X.-S.; Li L.; Li D.; Ye J.Recent Progress on Exploring Stable Metal-Organic Frameworks for Photocatalytic Solar Fuel Production. Sol. RRL 2020, 4, 1900547.
[17] Zhang K.; Xie X.; Li H.; Gao J.; Nie L.; Pan Y.; Xie J.; Tian D.; Liu W.; Fan Q.; Su H.; Huang L.; Huang W.Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence. Adv. Mater. 2017, 29, 1701804.
[18] Mi X.; Sheng D.; Yu, Y. e.; Wang, Y.; Zhao, L.; Lu, J.; Li, Y.; Li, D.; Dou, J.; Duan, J.; Wang, S. Tunable Light Emission and Multiresponsive Luminescent Sensitivities in Aqueous Solutions of Two Series of Lanthanide Metal-Organic Frameworks Based on Structurally Related Ligands. ACS Appl. Mater. Interfaces 2019, 11, 7914-7926.
[19] Wang X.-Q.; Ma X.; Feng D.; Tang J.; Wu D.; Yang J.; Jiao J.Four Novel Lanthanide(III) Metal-Organic Frameworks: Tunable Light Emission and Multiresponsive Luminescence Sensors for Vitamin B6 and Pesticides. Cryst. Growth Des. 2021, 21, 2889-2897.
[20] Yu H.; Liu Q.; Li J.; Su Z.-M.; Li X.; Wang X.; Sun J.; Zhou C.; Hu X.A dual-emitting mixed-lanthanide MOF with high water-stability for ratiometric fluorescence sensing of Fe3+ and ascorbic acid. J. Mater. Chem. C 2021, 9, 562-568.
[21] Tong Y.-J.; Yu L.-D.; Huang Y.; Fu Q.; Li N.; Peng S.; Ouyang S.; Ye Y.-X.; Xu J.; Zhu F.; Pawliszyn J.; Ouyang G.Polymer Ligand-Sensitized Lanthanide Metal-Organic Frameworks for an On-Site Analysis of a Radionuclide. Anal. Chem. 2021, 93, 9226-9234.
[22] Zhang F.; Ma J.; Huang S.; Li Y.A mechanical stability enhanced luminescence lanthanide MOF test strip encapsulated with polymer net for detecting picric acid and macrodantin. Spectrochim. Acta A 2020, 228, 117816.
[23] Li Y.; Zhang S.; Song D.A Luminescent Metal-Organic Framework as a Turn-On Sensor for DMF Vapor. Angew. Chem. Int. Ed. 2013, 52, 710-713.
[24] Chen B.; Yang Y.; Zapata F.; Lin G.; Qian G.; Lobkovsky E. B.Luminescent Open Metal Sites within a Metal-Organic Framework for Sensing Small Molecules. Adv. Mater. 2007, 19, 1693-1696.
[25] Hu Y.; Khoo R. S.H.; Lu, J.; Zhang, X.; Zhang, J. Robust Carbazole-Based Rare-Earth MOFs: Tunable White-Light Emission for Temperature and DMF Sensing. ACS Appl. Mater. Interfaces 2022, 14, 41178-41185.
[26] Gong T.; Li P.; Sui Q.; Chen J.; Xu J.; Gao E.-Q.A stable electron-deficient metal-organic framework for colorimetric and luminescence sensing of phenols and anilines. J. Mater. Chem. A 2018, 6, 9236-9244.
[27] Takashima Y.; Martínez V. M.; Furukawa S.; Kondo M.; Shimomura S.; Uehara H.; Nakahama M.; Sugimoto K.; Kitagawa S.Molecular decoding using luminescence from an entangled porous framework. Nat. Commun. 2011, 2, 168.
[28] Zheng X.; Fan R.; Lu H.; Wang B.; Wu J.; Wang P.; Yang Y.A dual-emitting Tb(III)&Yb(III)-functionalized coordination polymer: a “turn-on” sensor for N-methylformamide in urine and a “turn-off” sensor for methylglyoxal in serum. Dalton Trans. 2019, 48, 14408-14417.
[29] Kreuer K.-D.Proton Conductivity: Materials and Applications. Chem. Mater. 1996, 8, 610-641.
[30] Alberti G.; Casciola M.; Costantino U.; Leonardi, M. ac conductivity of anhydrous pellicular zirconium phosphate in hydrogen form. Solid State Ionics 1984, 14, 289-295.
[31] Iwahara, H. Proton conducting ceramics and their applications. Solid State Ionics1996, 86-88, 9-15.
[32] Skou E.; Kauranen P.; Hentschel J.Water and methanol uptake in proton conducting Nafion membranes. Solid State Ionics 1997, 97, 333-337.
[33] Bureekaew S.; Horike S.; Higuchi M.; Mizuno M.; Kawamura T.; Tanaka D.; Yanai N.; Kitagawa S.One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 2009, 8, 831-836.
[34] Hurd J. A.; Vaidhyanathan R.; Thangadurai V.; Ratcliffe C. I.; Moudrakovski I. L.; Shimizu G. K.H. Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework. Nat. Chem. 2009, 1, 705-710.
[35] Pili S.; Argent S. P.; Morris C. G.; Rought P.; García-Sakai, V.; Silverwood, I. P.; Easun, T. L.; Li, M.; Warren, M. R.; Murray, C. A.; Tang, C. C.; Yang, S.; Schröder, M. Proton Conduction in a Phosphonate-Based Metal-Organic Framework Mediated by Intrinsic “Free Diffusion inside a Sphere”. [J]. Am. Chem. Soc. 2016, 138, 6352-6355.
[36] Inukai M.; Horike S.; Itakura T.; Shinozaki R.; Ogiwara N.; Umeyama D.; Nagarkar S.; Nishiyama Y.; Malon M.; Hayashi A.; Ohhara T.; Kiyanagi R.; Kitagawa S.Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application. [J]. Am. Chem. Soc. 2016, 138, 8505-8511.
[37] Ramaswamy P.; Wong N. E.; Gelfand B. S.; Shimizu G. K.H. A Water Stable Magnesium MOF That Conducts Protons over 10-2 S cm-1. [J]. Am. Chem. Soc. 2015, 137, 7640-7643.
[38] Nguyen N. T.T.; Furukawa, H.; Gándara, F.; Trickett, C. A.; Jeong, H. M.; Cordova, K. E.; Yaghi, O. M. Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity. [J]. Am. Chem. Soc. 2015, 137, 15394-15397.
[39] Luo H.-B.; Ren L.-T.; Ning W.-H.; Liu S.-X.; Liu J.-L.; Ren X.-M.Robust Crystalline Hybrid Solid with Multiple Channels Showing High Anhydrous Proton Conductivity and a Wide Performance Temperature Range. Adv. Mater. 2016, 28, 1663-1667.
[40] Nagarkar S. S.; Unni S. M.; Sharma A.; Kurungot S.; Ghosh S. K.Two-in-One: Inherent Anhydrous and Water-Assisted High Proton Conduction in a 3D Metal-Organic Framework. Angew. Chem. Int. Ed. 2014, 53, 2638-2642.
[41] Umeyama D.; Horike S.; Inukai M.; Hijikata Y.; Kitagawa S.,Confinement of Mobile Histamine in Coordination Nanochannels for Fast Proton Transfer. Angew. Chem. Int. Ed. 2011, 50, 11706-11709.
[42] Sadakiyo M.; Yamada T.; Honda K.; Matsui H.; Kitagawa H.Control of Crystalline Proton-Conducting Pathways by Water-Induced Transformations of Hydrogen-Bonding Networks in a Metal-Organic Framework. [J]. Am. Chem. Soc. 2014, 136, 7701-7707.
[43] Tominaka S.; Coudert F.-X.; Dao T. D.; Nagao T.; Cheetham A. K.Insulator-to-Proton-Conductor Transition in a Dense Metal-Organic Framework. [J]. Am. Chem. Soc. 2015, 137, 6428-6431.
[44] Li J.-R.; Yakovenko A. A.; Lu W.; Timmons D. J.; Zhuang W.; Yuan D.; Zhou H.-C.Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo-Mo Dimers. [J]. Am. Chem. Soc. 2010, 132, 17599-17610.
[45] Chen Q.; Cheng J.; Wang J.; Li L.; Liu Z.; Zhou X.; You Y.; Huang W.,A fluorescent Eu(III) MOF for highly selective and sensitive sensing of picric acid. Sci. China Chem. 2019, 62, 205-211.
[46] Spek A. L.Structure validation in chemical crystallography. Acta Crystallogr. D 2009, 65, 148-155.
[47] Ji X.-Q.; Sun R.; Xiong J.; Sun H.-L.; Gao S.Tuning the dynamic magnetic behaviour and proton conductivity via water-induced reversible single-crystal to single-crystal structural transformation. J. Mater. Chem. C 2021, 9, 15858-15867.
[48] Wang X.; Kong C.-Y.; Lai J.-J.; Wei M.-L.Synthesis, Structure and Proton Conductivity of a Complex Based on Decorated Keggin-Type Cluster: {[Cu(dmbipy)(H2O)2Cl0.5]2 [PW12O40]}·7H2O (dmbipy = 4,4'-dimethyl-2,2'-bipyridine). J. Clust. Sci. 2016, 27, 645-656.
[49] Ohkoshi S.-i.; Nakagawa, K.; Tomono, K.; Imoto, K.; Tsunobuchi, Y.; Tokoro, H. High Proton Conductivity in Prussian Blue Analogues and the Interference Effect by Magnetic Ordering. [J]. Am. Chem. Soc. 2010, 132, 6620-6621. |