[1] Li H.; Kang Z.; Yang L.; Lee S. T.Carbon nanodots: synthesis, properties and applications. [J]. Mater. Chem. 2012, 22, 2423-24253. [2] Naik K.; Chaudhary S.; Ye L.; Parmar A. S.A Strategic review on carbon quantum dots for cancer-diagnostics and treatment. Front. Bioeng. Biotechnol. 2022, 10, 2296-4185. [3] Lu K. Q.; Quan Q.; Zhang N.; Xu Y. J.Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. [J]. Energy Chem. 2016, 25, 927-935. [4] Wang R.; Lu K. Q.; Tang Z. R.; Xu Y. J.Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717-3734. [5] Wang X.; Wang M.; Liu G.; Zhang Y.; Han G.; Vomiero A.; Zhao H.Colloidal carbon quantum dots as light absorber for efficient and stable ecofriendly photoelectrochemical hydrogen generation, Nano Energy 2011, 86, 2211-2855. [6] Parthiban V.; Panda S. K.; Sahu A. K.Highly fluorescent carbon quantum dots-Nafion as proton selective hybrid membrane for direct methanol fuel cells. Electrochim. Acta 2018, 292, 855-864. [7] Wang H.; Sun P. F.; Cong S.; Wu J.; Gao L. J.; Wang Y.; Dai X.; Yi Q. H.; Zou G. F.Nitrogen-doped carbon dots for "green" quantum dot solar cells. Nanoscale Res. Lett. 2016, 11, 1556-1276X. [8] Wang K. H.; Tong X.; Zhou Y. F.; Zhang H.; Navarro-Pardo, F.; Selopal, G. S.; Liu, G. J.; Tang, J.; Wang, Y. Q.; Sun, S. H.; Ma, D. L.; Wang, Z. M. M.; Vidal, F.; Zhao, H. G.; Sun, X. H.; Rosei, F. Efficient solar-driven hydrogen generation using colloidal heterostructured quantum dots. J. Mater. Chem. A 2019, 7, 14079-14088. [9] Zhao H. G.; Liu G. J.; You S. J.; Camargo F. V.A.; Zavelani-Rossi, M.; Wang, X. H.; Sun, C. C.; Liu, B.; Zhang, Y. M.; Han, G. T.; Vomiero, A.; Gong, X. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ. Sci. 2021, 14, 1754-5692. [10] Zhang L. Y.; Han Y. L.; Yang J. J.; Deng S. L.; Wang B. Y.Construction and photocatalysis of carbon quantum dots/layer- ed mesoporous titanium dioxide (CQDs/LM-TiO2) composites. Appl. Surf. Sci. 2021, 546, 0169-4332. [11] Liu X. H.; Yang Z. G.; Yang Y.; Li H. P.Carbon quantum dots sensitized 2D/2D carbon nitride nanosheets/bismuth tungstate for visible light photocatalytic degradation norfloxacin. Chemosphere 2022, 287, 0045-6535. [12] Kaur A.; Pandey K.; Kaur R.; Vashishat N.; Kaur M.Nanocomposites of carbon quantum dots and graphene quantum dots:environmental applications as sensors. Chemosensors 2022, 10, 2227-9040. [13] Guo J. Z.; Li H.; Ling L. T.; Li G.; Cheng R.; Lu X.; Xie A. Q.; Li Q.; Wang C. F.; Chen S.Green synthesis of carbon dots toward anti-counterfeiting. ACS Sustainable Chem. Eng. 2020, 8, 1566-1572. [14] Li S. H.; Qi M. Y.; Fan Y. Y.; Yang Y.; Anpo M.; Yamada Y. M.A.; Tang, Z. R.; Xu, Y. J. Modulating photon harvesting through dynamic non-covalent interactions for enhanced photochemical CO2 reduction. Appl. Catal., B 2021, 292, 0926-3373. [15] Li S. H.; Weng B.; Lu K. Q.; Xu Y. J.Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification. Acta Physico-Chimica Sinica 2018, 34, 708-718. [16] Kalytchuk S.; Wang Y.; Polakova K.; Zboril R.Carbon dot fluorescence-lifetime-encoded anti-counterfeiting. ACS Appl. Mater. Interfaces 2018, 10, 29902-29908. [17] Ding H.; Wei J. S.; Zhang P.; Zhou Z. Y.; Gao Q. Y.; Xiong H. M.Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 2018, 14, 1613-6810. [18] Tong X.; Zhou Y. F.; Jin L.; Basu K.; Adhikari R.; Selopal G. S.; Tong X.; Zhao H. G.; Sun S. H.; Vomiero A.; Wang Z. M.M.; Rosei, F. Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy 2017, 31, 441-449. [19] Ye M. T.; Cai T.; Zhao L. N.; Liu D.; Liu S. G.Covalently attached strategy to modulate surface of carbon quantum dots: Towards effectively multifunctional lubricant additives in polar and apolar base fluids. Tribol. Int. 2019, 136, 349-359. [20] Dimos K.Carbon quantum dots: surface passivation and functionalization. Curr. Org. Chem. 2016, 20, 682-695. [21] Kumar P.; Dua S.; Kaur R.; Kumar M.; Bhatt G.A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Adv. 2022, 12, 6432-6432. [22] Ye Z. G.; Li G. X.; Lei J.; Liu M.; Jin Y.; Li B. X.One-step and one-precursor hydrothermal synthesis of carbon dots with superior antibacterial activity. ACS Appl. Bio Mater. 2020, 3, 7095-7102. [23] Dong D. M.; Liu T. J.; Liang D. P.; Jin X. P.; Qi Z. H.; Li A. F.; Ning Y.Facile Hydrothermal Synthesis of Chlorella-derived environmentally friendly fluorescent carbon dots for differentiation of living and dead chlorella. ACS Appl. Bio Mater. 2021, 4, 3697-3705. [24] Liu G. J.; Wang X. H.; Han G. T.; Yu J. Y.; Zhao H. G.Earth abundant colloidal carbon quantum dots for luminescent solar concentrators. Mater. Adv. 2020, 1, 119-138. [25] Jiang K.; Wang Y. H.; Gao X. L.; Cai C. Z.; Lin H. W.Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem. Int. Ed. Engl. 2018, 57, 6216-6220. [26] Pakkath S. A.R.; Chetty, S. S.; Selvarasu, P.; Murugan, A. V.; Kumar, Y.; Periyasamy, L.; Santhakumar, M.; Sadras, S. R.; Santhakumar, K. Transition metal ion (Mn2+, Fe2+, Co2+, and Ni2+)-doped carbon dots synthesized via microwave-assisted pyrolysis: a potential nanoprobe for magneto-fluorescent dual-modality bioimaging. ACS Biomater. Sci. Eng. 2018, 4, 2582-2596. [27] Hsu P. C.; Shih Z. Y.; Lee C. H.; Chang H. T.Synthesis and analytical applications of photoluminescent carbon nanodots, Green Chem. 2012, 14, 917-920. [28] Dager A.; Uchida T.; Maekawa T.; Tachibana M.Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine Learning. Sci. Rep. 2019, 9, 2045-2322. [29] Elango D.; Packialakshmi J. S.; Manikandan V.; Jayanthi P.Sustainable synthesis of carbon quantum dots from shrimp shell and its emerging applications. Mater. Lett. 2022, 31, 20167-0577X. [30] Tan A. Z.; Yang G. H.; Wan X. J.Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-coun- terfeiting. Spectrochim. Acta, Part A 2021, 253, 1386-1425. [31] Lv H. F.; Wang S. J.; Wang Z. X.; Meng W. Y.; Han X. W.; Pu J. W.Fluorescent cellulose-based hydrogel with carboxymethyl cellulose and carbon quantum dots for information storage and fluorescent anti-counterfeiting. Cellulose 2022, 29, 6193-6204. [32] Li P. F.; Zeng J. S.; Wang B.; Cheng Z.; Xu J.; Gao W. H.; Chen K. F.Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose. Carbohydr. Polym. 2020, 247, 0144-8617. [33] Guo Q.; Zhang M.; Tong Z.; Zhao S.; Zhou Y.; Wang Y.; Jin S.; Zhang J.; Yao H.-B.; Zhu M.; Zhuang T.Multimodal-Responsive Circularly Polarized Luminescence Security Materials. [J]. Am. Chem. Soc. 2023, 138, 1520-5126. [34] LeCroy, G. E.; Messina, F.; Sciortino, A.; Bunker, C. E.; Wang, P.; Fernando, K. A. S.; Sun, Y. P. Characteristic excitation wavelength dependence of fluorescence emissions in carbon "quantum" dots. J. Phys. Chem. C 2017, 121, 28180-28186. [35] Yoo S.; Song Y.; Hahn S.Ultralong persistent luminescence from carbon dots. Light Sci. Appl. 2022, 11, 2047-7538. [36] Wang L.; Li W. T.; Yin L. Q.; Liu Y. J.; Guo H. Z.; Lai J. W.; Han Y.; Li G.; Li M.; Zhang J. H.; Vajtai R.; Ajayan P. M.; Wu M. H.Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, 2375-2548. [37] Wei X. Y.; Yang J. W.; Hu L. L.; Cao Y.; Lai J.; Cao F. F.; Gu J. J.; Cao X. F.Recent advances in room temperature phosphorescent carbon dots: preparation, mechanism, and applications. J. Mater. Chem. C 2021, 9, 4425-4443. [38] Lin C. J.; Zhuang Y. X.; Li W. H.; Zhou T. L.; Xie R. J.Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 2019, 11, 6584-6590. [39] Ding Y. F.; Wang X. L.; Tang M.; Qiu H. B.Tailored fabrication of carbon dot composites with full-Color ultralong room- temperature phosphorescence for multidimensional encryption, Adv. Sci. 2022, 9, 2103833. [40] Ren S. H.; Liu B. X.; Wang M. R.; Han G. T.; Zhao H. G.; Zhang Y. M.Highly bright carbon quantum dots for flexible anti-counterfeiting. J. Mater. Chem. C 2022, 10, 11338-11346. [41] Jiang K.; Wang Y. C.; Lin C. J.; Zheng L. C.; Du J. R.; Zhuang Y. X.; Xie R. J.; Li Z. J.; Lin H. W.Enabling robust and hour-level organic long persistent luminescence from carbon dots by covalent fixation. Light Sci. Appl. 2022, 11, 2095-5545. [42] Jiang K.; Wang Y. H.; Cai C. Z.; Lin H. W.Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 2018, 30, 0935-9648. [43] Sun Y. Q.; Liu S. T.; Sun L. Y.; Wu S. S.; Hu G. Q.; Pang X. L.; Smith A. T.; Hu C. F.; Zeng S. S.; Wang W. X.; Liu Y. L.; Zheng M. T.Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 2020, 11, 2041-1723. [44] Feng Q.; Xie Z. G.; Zheng M.Colour-tunable ultralong-life- time room temperature phosphorescence with external heavy- atom effect in boron-doped carbon dots. Chem. Eng. J. 2021, 420, 1385-8947. [45] Sun Y. Q.; Zhang X. J.; Zhuang J. L.; Zhang H. R.; Hu C. F.; Zheng M. T.; Lei B. F.; Liu Y. L.The room temperature afterglow mechanism in carbon dots: Current state and further guidance perspective. Carbon 2020, 165, 306-316. [46] Liu J. C.; Kang X.; Zhang H. Y.; Liu Y. C.; Wang C. Y.; Gao X. R.; Li Y. R.Carbon dot-based nanocomposite: Long-lived thermally activated delayed fluorescence for lifetime thermal sensing. Dyes Pigm. 2020, 181, 0143-7208. [47] Zou W. S.; Ji Y. J.; Wang X. F.; Zhao Q. C.; Zhang J.; Shao Q.; Liu J.; Wang F.; Wang Y. Q.Insecticide as a precursor to prepare highly bright carbon dots for patterns printing and bioimaging: A new pathway for making poison profitable. Chem. Eng. J. 2016, 294, 323-332. [48] Liang R.; Huo L. J.; Yu A.; Wang J. J.; Jia C. M.; Li J. W.A micro-wave strategy for synthesizing room temperature phosphorescent materials. Chin. Chem. Lett. 2022, 33, 243-246. |