|
||||||||||||||
|
|
General Chemistry ›› 2024, Vol. 10 ›› Issue (1-2): 230004-230004.DOI: 10.21127/yaoyigc20230004
• Reviews • Previous Articles Next Articles
Haokun Jiang, Mingzhe Zhu*, Zhongmin Zhou*
Received:
2023-05-01
Accepted:
2023-06-07
Online:
2024-06-30
Published:
2024-05-10
Contact:
Email: z.mingzhe@163.com (M. Z.), zhouzm@qust.edu.cn (Z. Z.)
Haokun Jiang, Mingzhe Zhu, Zhongmin Zhou. Advancements in Perovskite Solar Cells: Interface and Additive Engineering Innovations[J]. General Chemistry, 2024, 10(1-2): 230004-230004.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.genchemistry.org/EN/10.21127/yaoyigc20230004
[1]Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [2]Kim H. S.; Lee C.-R.; Im J. H.; Lee K. B.; Moehl T.; Marchioro A.; Moon S. J.; Humphry-Baker R.; Yum J.-H.; Moser J.-E.; Grätzel M.; Park, N.-G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%.Sci. Rep.2012,2, 591-597. [3]Lee M. M.; Teuscher J.; Miyasaka T.; Murakami T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Super- structured Organometal Halide Perovskites.Science2012,338, 643-647. [4]Liu M.; Johnston M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapor Deposition.Nature2013,501, 395-398. [5]Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent Engineering for High-Performance Inorganic- Organic Hybrid Perovskite Solar Cells.Nat. Mater.2014,13, 897-903. [6]Jeon N. J.; Noh J. H.; Yang W. S.; Kim YC.; Ryu S.; Seo J.; Seok, S. I. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells.Nature2015,517, 476-480. [7]Liu L.; Huang S.; Lu Y.; Liu P. F.; Zhao Y. Z.; Shi C. B.; Zhang S. Y.; Wu J. F.; Zhong H. Z.; Sui M. L.; Zhou H. P.; Jin H. B.; Li Y. J.; Chen, Q. Grain-Boundary “Patches” byIn SituConversion to Enhance Perovskite Solar Cells Stability.Adv. Mater.2018,30, 180054. [8]Aydin E.; De Bastiani M.; De Wolf S. Defect and Contact Passivation for PerovskiteSolar Cells.Adv. Mater.2019,31, 1900428. [9]Dong Q.; Fang Y.; Shao Y.; Mulligan P.; Qiu J.; Cao L.; Huang, J. Electron-hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals.Science2015,347, 967-970. [10]Galkowski K.; Mitioglu A.; Miyata A.; Plochocka P.; Portugall O.; Eperon G. E.; Stergiopoulos T.; Stranks S. D.; Snaith H. J.; Nicholas R. J. Determination of the Exciton Binding Energy and Effective Masses for Methylammonium and Formamidinium Lead Tri-Halide Perovskite Semiconductors.Energy Envision. Sci.2016,9, 962-970. [11]Baikie T.; Fang Y.; Kadro J.-M.; Schreyer M.; Wei F.; Mhaisalkar S. G.; Grätzel M.; White, T. J. Phase Transitions of Formamidinium Lead Iodide Perovskite under Pressure.J. Mater. Chem. A2013,1, 5628-5641. [12]Jeong J.; Kim M.; Seo J.; Lu H.; Ahlawat P.; Mishra A.; Yang Y.; Hope M. A.; Eickemeyer F. T.; Kim M.; Lee B.; M. Grätzel.; Kim, J. Y. Pseudo-Halide Anion Engineering for α-FAPbI3 Perovskite Solar Cells.Nature2021,592, 381-385. [13]Min H.; Lee D. Y.; Kim J.; Kim G.; Paik M. J.; Kim J. K.; Kim K. J.; Kim K. G.; Seok, S. I. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes.Nature2021,598, 444-450. [14]National Renewable Energy Laboratory, Best Research-Cell Efficiencies. https://www.nrel.gov/pv/cell-efficiency.html. [15]Saparov B.; Mitzi, D. B. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design.Chem. Rev.2016,116, 4558-4596. [16]Quan L. N.; Rand, B. P; Mhaisalkar, S. G.; Lee T. W.; Sargent, E. H. Perovskites for Next-Generation Optical Sources.Chem. Rev.2019,119, 7444-7477. [17]Fu Y.; Zhu H.; Chen J.; Hautzinger M. P.; Zhu X. Y.; Jin S. Metal Halide Perovskite Nanostructures for Optoelectronic Applications and the Study of Physical Properties.Nat. Rev. Mater.2019,4, 169-188. [18]Li Z. P.; Wang X.; Wang Z. W.; Shao Z. P.; Hao L. Z.; Rao Y.; Chen C.; Liu D. C.; Zhao Q. Q.; Sun X. H.; Gao, C. Y; Zhang, B. Q.; Wang X. Z.; Wang L.; Cui G. L.; Pang, S. P. Ammonia for Post-Healing of Formamidinium-Based Perovskite Films.Nat. Commun.2022,13, 4417-4429. [19]Wang D.; Wright M.; Elumalai N. K.; Uddin, A. Stability of Perovskite Solar Cells.Sol. Energ. Mat. Sol. C2015,12, 255-275. [20]Huang F.; Li M. J.; Siffalovic P.; Cao G. Z.; Tian, J. J. From Scalable Solution Fabrication of Perovskite Films towards Commercialization of Solar Cells.Energy Envision. Sci.2019,12, 518-549. [21]Shi P. J.; Ding Y.; Ren Y. K.; Shi X. Q.; Arain Z.; Liu C.; Liu X. P.; Cai M. L.; Cao C. Z.; Nazeeruddin M. K.; Dai, S. Y. Template-assisted Formation of High Quality α-Phase HC(NH2)2PbI3 Perovskite Solar Cells.Adv. Sci.2019,6, 1901591. [22]Ren Y. K.; Chen J.; Ji, D H.; Sun Y. J.; Li C. Improve the Quality of HC(NH2)2PbIxBr3-xthrough Iodine Vacancy Filling for Stable Mixed Perovskite Solar Cells.Chem. Eng. J.2020,384, 123273. [23]Li C.; Guo Q.; Zhang H. J.; Bai Y. M.; Wang F. Z.; Liu L.; Hayat T.; Alsaedi A.; Tan Z. A. Enhancing the Crystallinity of HC(NH2)2-PbI3 Film by Incorporating Methylammonium Halide Intermediate for Efficient and Stable Perovskite Solar Cells.Nano Energy2017,40, 248-257. [24]Ren Y.; Zhang N.; Wang Q.; Zhu J.; Li, C. Restricting δ-Phase Transformation of HC(NH2)2PbI3 viaIodine-Vacancy Filling for Efficient Perovskite Solar Cells.Sci. China Mater.2020,63, 1015-1023. [25]Turren-Cruz S.-H.; Hagfeldt A.; Saliba, M. Methylammonium-Free High-Performance, and Stable Perovskite Solar Cells on a Planar Architecture.Science2018,362, 449-453. [26]Weller M. T.; Weber O. J.; Frost J. M.; Walsh, A. Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K.J. Phys. Chem. Lett.2015,6, 3209-3212. [27]Stoumpos C. C.; Malliakas C. D.; Kanatzidis M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties.Inorg. Chem.2013,52, 9019-9038. [28]Pang S.; Hu H.; Zhang J.; Lv S.; Yu Y.; Wei F.; Qin T.; Xu H.; Liu Z.; Cui, G. NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells.Chem. Mater.2014,26, 1485-1491. [29]Lee J.-W.; Kim D.-H.; Kim H.-S.; Seo S.-W.; Cho S. M.; Park N.-G. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell.Adv. Energy Mater.2015,5, 1501310. [30]Yi C.; Luo J.; Meloni S.; Boziki A.; Ashari-Astani N.; Grätzel C.; Zakeeruddin S. M.; Rothlisberger U.; Grätzel, M. Stabilization of Mixed A-Cation ABX3 Metal Halide Perovskites for High Performance Perovskite Solar Cells.Energy Environ. Sci.2016,9, 656-662. [31]Cui X.; Jin J.; Tai Q.; Yan, F. Recent Progress on the Phase Stabilization of FAPbI3 for High-Performance Perovskite Solar Cells.Sol. RRL2022,6, 2200497. [32]Zhou Z. M.; Pang S. P.; Liu Z. h.; Xu H. X.; Cui, G. l. Interface Engineering for High-Performance Perovskite Hybrid Solar Cells.J. Mater. Chem. A2015,3, 19205-19212. [33]Lee M. M.; Teuscher J.; Miyasaka T.; Murakami J. N.; Snaith, J. H. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites.Science2012,338, 643-647. [34]Malinkiewicz O.; Yella A.; Lee Y. H.; Espallargas G. M.; Grätzel M.; Nazeeruddin M. K.; Bolink, H. J. Perovskite Solar Cells Employing Organic Charge-Transport Layers.Nat. Photonics2014,8, 128-132. [35]Jeng J. Y.; Chiang Y. F.; Lee M. H.; Peng S. R.; Guo T. F.; Chen P.; Wen, T. C. Nickel Oxide Electrode Interlayer in CH3NH3-PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells.Adv. Mater.2013,25, 4107-4113. [36]Eperon G. E.; Burlakov V. M.; Docampo P.; Goriely A.; Snaith, H. J. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells.Adv. Funct. Mater.2013,24,151-157. [37]Mei A.; Li X.; Liu L.; Ku Z.; Liu T.; Rong Y.; Xu M.; Hu M.; M Grätzel.; Han, H. A Hole-Conductor-Free, Fully Printable Meso-scopic Perovskite Solar Cell with High Stability.Science2014,345, 295-298. [38]Ku Z.; Y Rong.; Xu M.; Liu T.; Han, H. Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode.Sci. Rep.2013,3, 3132. [39]Etgar L.; Gao P.; Xue Z.; Peng Q.; Chandiran A. K.; Liu B.; Nazeeruddin M. K.; Grätzel, M. A Hybrid Lead Iodide Perovskite and Lead Sulfide QD Heterojunction Solar Cell to Obtain a Panchromatic Response.J. Am. Chem. Soc.2012,134, 11586-11590. [40]Liu D.; Yang J.; Kelly, T. L. Effect of CH3NH3PbI3 Thickness on Device Efficiency in Planar Heterojunction Perovskite Solar Cells.J. Am. Chem. Soc.2014,136, 17116-17122. [41]Burschka J.; Pellet N.; Moon S. J.; Humphry-Baker R.; Gao P.; Nazeeruddin M. K.; Grätzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells.Nature2013,499, 316-317. [42]Xiao M.; Huang F.; Huang W.; Dkhissi Y.; Zhu Y.; Etheridge J.; Gray-Weale A.; Bach U.; Cheng Y.-B.; Spiccia, L. A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells.Angew. Chem. Int. Ed.2014,53, 9898-9903. [43]Hwang K.; Jung Y.-S.; Heo Y.-J.; Scholes F. H.; Watkins S. E.; Subbiah J.; Jones D. J.; Kim D.-Y.; Vak D. Progress in Scalable Coating and Roll-to-Roll Compatible Printing Processes of Perovskite Solar Cells towards Realization of Commercialization.Adv. Mater.2015,27, 1241-1247. [44]Zhou Z.; Wang Z.; Zhou Y.; Pang S.; Wang D.; Xu H.; Liu Z.; Padture N. P.; Cui, G. L. Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells.Angew. Chem. Int. Ed.2015,54, 9705-9709. [45]Zhou Y.; Yang M. J.; Wu W. W.; Vasiliev A. L.; Zhu K.; Padture, N. P. Room-Temperature Crystallization of Hybrid-Perovskite Thin FilmsviaSolvent-Solvent Extraction for High-Performance Solar Cells.J. Mater. Chem. A2015,3, 8178-8184. [46]Liu M.; Johnston M. B.; Snaith, J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapor Deposition.Nature2013,501, 395-398. [47]Chen Q.; Zhou H.; Hong Z.; Luo S.; Duan H. S.; Wang H. H.; Liu Y.; Li G.; Yang, Y. Planar Heterojunction Perovskite Solar CellsviaVapor-Assisted Solution Process.J. Am. Chem. Soc.2014,136, 622-625. [48]Pellet N.; Gao P.; Gregori G.; Yang T. Y.; Nazeeruddin N. K.; Maier J.; Grätzel Z.; Mixed - Organic - Cation Perovskite Photovoltaics for Enhanced Solar -Light Harvesting.Angew. Chem. Int. Ed.2014,53, 3151-3157. [49]Anarak E. H.; Kermanpur A.; Mayer M. T.; Turren-Cruz, L. S.-H. J. Seo, J. Luo, S. M. Zakeeruddin, Edvinsson, W. R. T.; Grätzel M.; Hagfeldt A.; Correa-Baena, J.-P. Low-Temper- ature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells.ACS Energy Lett.2018,3, 773-778. [50]Ono L. K.; Liu S. Z.; Qi, Y. B. Reducing Detrimental Defects for High-Performance Metal Halide Perovskite Solar Cells.Angew. Chem. Int. Ed.2020,59, 6676-6698. [51]Niu G.; Guo X.; Wang, L. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells.J. Mater. Chem. A2015,3, 8970-8980. [52]Frost J. M.; Butler K. T.; Brivio F.; Hendon C. H.; Schilfgaarde M.; Walsh, van A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells.Nano Lett.2014,14, 2584-2590. [53]Chen B.; Rudd P. N.; Yang S. Imperfections and Their Passivation in Halide Perovskite Solar Cells.Chem. Soc. Rev.2019,1448, 3842-3867. [54]Ran, C.; Xu, J.; Gao, W. Defects in Metal Triiodide Perovskite Materials towards High-Performance Solar Cells: Origin, Impact, Characterization, and Engineering.Chem. Soc. Rev.2018,47, 4581-4610. [55]Niu Y. J.; Peng Y. L.; Zhang X. X.; Hong F.; Hu, P. Resonant Molecular Modification for Energy Level Alignment in Perovskite Solar Cells.ACS Energy Lett.2022,7,3104-3111. [56]Wang Q.; Shao Y.; Dong Q.; Xiao Z.; Yuan Y.; Huang, J. Large Fill-Factor Bilayer Iodine Perovskite Solar Cells Fabricated by a Low-Temperature Solution-Process.Energy Environ. Sci.2014,7, 2359-2365. [57]Chen W.; Wu Y.; Liu J.; Qin C.; Yang X.; Islam A.; Cheng Y.-B.; Han, L. Hybrid Interfacial Layer Leads to Solid Performance Improvement of Inverted Perovskite Solar Cells.Energy Environ. Sci.2015,8, 629-640. [58]Seo J.; Park S.; Kim Y. C.; Jeon N. J.; Noh J. H.; Yoon S. C.; Seok S. I. Benefits of Very Thin PCBM and LiF Layers for Solution-Processed p-i-n Perovskite Solar Cells.Energy Environ. Sci.2014,7, 2642-2646. [59]Xue Q.; Hu Z.; Liu J.; Lin J.; Sun C.; Chen Z.; Duan C.; Wang J.; Liao C.; Huang H.-L.; Cao, Y. Highly Efficient Fullerene/ Perovskite Planar Heterojunction Solar CellsviaCathode Modification with an Amino-Functionalized Polymer Interlayer.J. Mater. Chem.A2014,2, 19598-19603. [60]Zhu Z.; Ma J.; Wang Z.; Mu C.; Fan Z.; Du L.; Bai Y.; Fan L.; Yan H.; Phillips D. L.; Yang, S. Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots.J. Am. Chem. Soc.2014,136, 3760-3763. [61]Hu, Q.; Wu, J.; Jiang, C.; Liu, T.; Que, X.; Zhu, R.; Gong, Q. Engineering of Electron-Selective Contact for Perovskite Solar Cells with Efficiency Exceeding 15%.ACS Nano2014,8, 10161-10167. [62]Zhan J. B.; Li M.; Zhou, Z. M. Effective Surface PassivationviaIntermolecular Interactions for High-Performance Perovskite Solar Cells.Sol. RRL2022,6, 2200082. [63]Li Z.; Li B.; Wu X.; Sheppard A. A.; Zhang S. F.; Gao D. P.; Nicholas J.; Zhu, Z. L. Organometallic-Functionalized Interfaces for Highly Efficient Inverted Perovskite Solar Cells.Science2022,376, 416-420. [64]Paek S.; Rub M. A.; Choi H.; Kosa S. A.; Alamry K. A.; Cho J. W.; Gao P.; Ko J.; Asiri, A. M. A. Dual-Functional Asymmetric Squaraine-Based Low Band Gap Hole Transporting Material for Efficient Perovskite Solar Cells.Nanoscale2016,8, 6335-6340. [65]Xiao Q.; Wu F.; Han M.; Li Z.; Zhu L.; Li, Z. A Pseudo-Two-Dimensional Conjugated Polysquaraine: An Efficient p-Type Poly-mer Semiconductor for Organic Photovoltaics and Perovskite Solar Cells.J. Mater. Chem.A2018,6, 13644-13651. [66]Wang Z.; Pradhan A.; Kamarudin M. A.; Pandey M.; Pandey S. S.; Zhang P.; Ng C. H.; Tripathi A. S. M.; Ma T.; Hayase S. Passivation of Grain Boundary by Squaraine Zwitterions for Defect Passivation and Efficient Perovskite Solar Cells.ACS Appl. Mater. Interfaces2019,11, 10012-10020. [67]Xiao Q.; Tian J.; Xue Q.; Wang J.; Xiong B.; Han M.; Li Z.; Zhu Z.; Yip H. L.; Li, Z. Dopant-Free Squaraine-Based Polymeric Hole-Transporting Materials with Comprehensive Passivation Effects for Efficient All-Inorganic Perovskite Solar Cells.Angew. Chem. Int. Ed.2019,58, 17724-17730. [68]Sadewassers, G.Kelvin Probe Force Microscopy. Springer Berlin, Berin, Heidelberg, 2012, p. 23. [69]Zhuang X. M.; Zhou D. L.; Liu S. S.; Shi R.; Liu Z. C.; Wang L.; Liu T. Y.; Liu B.; Song D. L.; Hong, W. Learning From Plants: Lycopene Additive Passivation toward Efficient and “Fresh” Perovskite Solar Cells with Oxygen and Ultraviolet Resistance.Adv. Energy. Mater.2022,12, 2200614. [70]Hao Y. Y.; Wang X. Z.; Zhu M. Z.; Jiang X. F.; Wang L. C.; Pang S. P.; Cao G. R.; Zhou, Z. M. Sulfonyl Passivation Through Syner-gistic Hydrogen Bonding and Coordination Interactions for Efficient and Stable Perovskite Solar Cells.J. Mater. Chem. A2022,10, 13048-13054. [71]Peng C.; Li C.; Zhu M.; Zhang C.; Jiang X.; Yin H.; He B.; Li H.; Li M.; So S. K.; Zhou Z. M. Reducing Energy Disorder for Efficient and Stable Sn-Pb Alloyed Perovskite Solar Cells.Angew. Chem. Int. Ed.2022,61,e202201209. [72]Wen L. R.; Rao Y.; Zhu M. Z.; Li R. T.; Zhan J. B.; Zhang L. B.; Wang L.; Li M.; Pang S. P.; Zhou Z. M. Reducing Defects Density and Enhancing Hole Extraction for Efficient Perovskite Solar Cells Enabled by π-Pb2+ Interactions.Angew. Chem. Int. Ed.2021,60, 17356-17361. [73]Wang R.; Xue J.; Meng L.; Lee J.-W.; Zhao Z.; Sun P.; Cai L.; Huang T.; Z.; Wang Z.-K.; Wang Y.; Duan J. L.; Yang S.; Tan Y.; Yuan Y.; Huang Y. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells.Joule2019,3, 1464-1477. [74]Li B. Y.; Li Z. P.; Jiang X. F.; Wang Z. C.; Rao Y.; Zhang C. J.; Zhu M. Z.; Zhang L. B.; Wen L. R.; Kong S. S.; Zhou Y. Y.; Pang S. P.; Zhou Z. M. Synchronous Regulation of Bulk and Interfacial Defects by an Ionic Liquid for Efficient and Stable Perovskite Solar Cells.Appl. Surf. Sci.2022,603, 154410. [75]Bi C.; Zheng X.; Chen B.; Wei H.; Huang, J. Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates: Mysterious Enhancement of Device Efficiency Revealed.ACS Energy Lett.2017,2, 1400-1406. [76]Abdi-Jalebi M.; Andaji-Garmaroudi Z.; Cacovich S.; Stavrakas C.; Philippe B.; Richter J. M.; Alsari M.; Booker E. P.; Hutter E. M.; Pearson A. J.; Lilliu S.; Savenije T. J.; Rensmo H.; Divitini G.; Ducati C.; Friend R. H.; Stranks S. D. Maximizing and Stabilizing Luminescence from Halide Perovskites with Potassium Passivation.Nature2018,555, 497-501. [77]Han Y.; Zhao H.; Duan C.; Yang S.; Yang Z.; Liu Z.; Liu, S. Controlled n-Doping in Air-Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79%.Adv. Funct. Mater.2020,30, 1909972. [78]Li Q.; Zhao Y.; Fu R.; Zhou W.; Zhao Y.; Liu X.; Yu D.; Zhao, Q. Efficient Perovskite Solar Cells Fabricated Through CsCl-Enhanced PbI2 PrecursorviaSequential Deposition.Adv. Mater.2018,30, 1803095. [79]Li N.; Tao S.; Chen Y.; Niu X.; Onwudinanti C. K.; Hu C.; Qiu Z.; Xu Z.; Zheng G.; Wang L.; Zhang Y.; Li L.; Liu H.; Lun Y.; Hong J.; Wang X.; Liu Y.; Xie H.; Gao Y.; Bai Y.; Yang S.; Brocks G.; Chen Q.; Zhou H. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells.Nat. Energy2019,4, 408-415. [80]Yuan S.; Cai Y.; Yang S.; Zhao H.; Qian F.; Han Y.; Sun J.; Z.; Liu S. Simultaneous Cesium and Acetate Coalloying Improves Effi-ciency and Stability of FA0.85MA0.15PbI3 Perovskite Solar Cell with an Efficiency of 21.95%.Sol. RRL2019,3, 1900220. [81]Xiao K. H.; Gao Q. L.; Gu Y.; Luo S.; Lin X.; Zhu R. X.; Xu J.; Tan J.; Hai R. Simultaneously enhanced moisture tolerance and defect passivation of perovskite solar cells with cross-linked grain encapsulation.J. Energy Chem.2021,56, 455. [82]Liu, L.; Huang, S.; Lu. Y.; Liu, P; Zhao, Y.; Shi, C.; Zhang, S.; Wu, J.; Zhong, H.; Sui, M.; Zhou, H.; Jin, H. Li, Y.; Chen, Q. Grain-Boundary “Patches” byIn SituConversion to Enhance Perovskite Solar Cells Stability.Adv. Mater.2018,30, 1800544. [83]Kanda, H.; N. Shibayama.; A. J. Huckaba.; Lee, Y.; Paek, S.; Klipfel, N.; Roldn-Carmona, C.; Grancini, G.; Zhang, Y.; Abuhelaiqa, M.; Cho, K. T.; Li, M.; M. D.; Mensi, S.; Kingee, M. K. Nazeeruddin, M. K. Band-Bending Induced Passivation: High Performance and Stable Perovskite Solar Cells Using a Perhydropoly(silazane) Precursor.Energy. Environ. Sci. 2020,13, 1222-1230. [84]Fan F.; Zhang Y.; Hao M.; Xin F.; Zhou Z.; Zhou, Y. Harnessing Chemical Functions of Ionic Liquids for Perovskite Solar Cells.J. Energy Chem.2022,68, 797-810. |
[1] | Angela Terracinaa, and Gianpiero Buscarino. Water Stability of Metal-Organic Framework HKUST-1 [J]. General Chemistry, 2021, 7(4): 210002-210002. |
[2] | Yajie Fu, Muhammad Sohail, Aaqib Khurshid, Derong Cao. Progress in D−A−D-type Small Molecule Hole-Transport Materials for Perovskite Solar Cells [J]. General Chemistry, 2021, 7(4): 210009-210009. |
[3] | Mingli Sun, Changjin Ou, Baoyi Ren, Linghai Xie, Xianghua Zhao, Wei Huang. Recent Advances in Spiro[fluorene-9,9′-xanthene]-Based Hole Transport Materials for Perovskite Solar Cells [J]. General Chemistry, 2020, 6(1): 190021-190021. |
[4] | Yuanyuan Kan, Bo Xu, Ke Gao*. A-D-A Structured Small-Molecule Hole Transporting Materials for Dopant-Free Perovskite Solar Cells [J]. General Chemistry, 2019, 5(2): 180026-180026. |
[5] | Dongqin Su, Zehua Tang, Jinfeng Xie, Zhengxu Bian, Junhao Zhang, Aihua Yuan. High Performance Layered Inorganic Flame Retardants: a Review [J]. General Chemistry, 2019, 5(1): 180021-180021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
沪ICP备15041762号-2 Copyright © General Chemistry, All Rights Reserved. Address: 425 East 76th Street, Apt 9E, New York, NY, 10021, United States |