[1] Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910. [2] Nasibullin, R. T.; Kveglis, L. I.; Nyavro, A. V.; Cherepanov, V. N. Magnetic properties of Ni-Ti clusters of the lower hierarchical level. Chem. Phys. Lett. 2019, 716, 199–206. [3] Cervantes-Flores, A.; Cruz-Martinez, H.; Solorza-Feria, O.; Calaminici, P. A first-principles study of NinPdn (n = 1–5) clusters. J. Mol. Model. 2017, 23, 161. [4] Baletto, F.; Ferrando, R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 2005, 77, 371–423. [5] Mai, D. T. T.; Pham, H. T.; Tam, N. M.; Nguyen, M. T. Geometry and bonding of small binary boron-aluminum clusters BnAln (n = 1–7): Electron donation and interlocking aromaticity. Chem. Phys. Lett. 2019, 714, 87–93. [6] Lopez-Sosa, L.; Cruz-Martinez, H.; Solorza-Feria, O.; Calaminici, P. Nickel and copper doped palladium clusters from a first-principles perspective. Int. J. Quantum Chem. 2019, 119, e26013. [7] Miralrio, A.; Hernandez-Hernandez, A.; Pescador-Rojas, J. A.; Sansores, E.; Lopez-Perez, P. A.; Martinez-Farias, F.; Cortes, E. R. Theoretical study of the stability and properties of magic numbers (m = 5, n = 2) and (m = 6, n = 3) of bimetallic bismuth-copper nanoclusters; BimCun. Int. J. Quantum Chem. 2017, 117, e25449. [8] Cruz-Martinez, H.; Lopez-Soso, L.; Solorza-Feria, O.; Calaminici, P. First-principles investigation of adsorption and dissociation of molecular oxygen on pure Pd, Ni-doped Pd and NiPd alloy clusters. Int. J. Hydrogen Energy 2017, 42, 30310–30317. [9] Li, X. M.; Wei, J. R.; Aifantis, K. E.; Fan, Y. B.; Feng, Q. L.; Cui, F. Z.; Watari, F. Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res. A 2016, 104, 1285–1296. [10] Yan, H.; Melosh, N. Nanoparticles make salty circuits. Nat. Nanotechnol. 2016, 11, 579–580. [11] Yen, H.; Kleitz, F. High-performance solid catalysts for H2 generation from ammonia borane: progress through synergetic Cu-Ni interactions. J. Mater. Chem. A 2013, 1, 14790–14796. [12] Lin, J. H.; Guliants, V. V. Hydrogen production through water- gas shift reaction over supported Cu, Ni, and Cu-Ni anoparticle catalysts prepared from metal colloids. ChemCatChem 2012, 4, 1611–1621. [13] Jha, A.; Jeong, D. W.; Jang, W. J.; Rode, C. V.; Roh, H. S. Mesoporous NiCu-CeO2 oxide catalysts for high-temperature water-gas shift reaction. RSC Adv. 2015, 5, 1430–1437. [14] Ang, M. L.; Miller, J. T.; Cui, Y.; Mo, L.; Kawi, S. Bimetallic Ni-Cu alloy nanoparticles supported on silica for the water-gas shift reaction: activating surface hydroxyls via enhanced CO adsorption. Catal. Sci. Technol. 2016, 6, 3394–3409. [15] Zhang, H. M.; Wang, Y. F.; Kwok, Y. H.; Wu, Z. C.; Xia, D. H.; Leung, D. Y. C. A direct ammonia microfluidic fuel cell using NiCu nanoparticles supported on carbon nanotubes as an Electrocatalyst. ChemSusChem 2018, 11, 2889–2897 [16] Li, T. T.; He, C.; Zhang, W. X.; Cheng, M. Enhanced catalytic CO oxidation by Cu13-mNim (m = 0, 1, 13) clusters at ambient temperatures with more active sites and distinct mechanistic pathways. Appl. Surf. Sci. 2019, 479, 39–46. [17] Yang, Y.; Cheng, D. J. Role of composition and geometric relaxation in CO2 binding to Cu-Ni bimetallic clusters. J. Phys. Chem. C 2014, 118, 250–258. [18] Ricardo-Chavez, J. L.; Pastor, G. M. First principles calculations on Ni impurities in Cu clusters. J. Magn. Magn. Mater. 2005, 294, 122–126. [19] Ricardo-Chavez, J. L.; Pastor, G. M. Structural properties of small copper clusters with a nickel impurity. Comput. Mater. Sci. 2006, 35, 311–315. [20] Florez, E.; Mondragon, F.; Fuentealba, P. Effect of Ni and Pd on the geometry, electronic properties, and active sites of copper clusters. J. Phys. Chem. B 2006, 110, 13793–13798. [21] Die, D.; Zheng, B. X.; Kuang, X. Y.; Zhao, Z. Q.; Guo, J. J.; Du, Q. Exploration of the Structural, Electronic and Tunable Magnetic Properties of Cu4M (M = Sc-Ni) Clusters. Materials 2017, 10, 946. [22] Dong, L. H.; Yin, B.; Zhang, L.; Yin, Y. S.; Zhang, Y. J. Theoretical study of the effect of nickel and tin doping in copper clusters. Synth. Met. 2012, 162, 119–125. [23] Singh, R. K.; Iwasa, T.; Taketsugu, T. Insights into geometries, stabilities, electronic Structures, reactivity descriptors, and magnetic properties of bimetallic NimCun-m (m = 1, 2; n = 3–13) clusters: comparison with pure copper clusters. J. Comput. Chem. 2018, 39, 1878–1889. [24] Boulbazine, M.; Boudjahem, A. G.; Bettahar, M. Stabilities, electronic and magnetic properties of Cu-doped nickel clusters: a DFT investigation. Mol. Phys. 2017, 115, 2495–2507. [25] Derosa, P. A.; Seminario, J. M.; Balbuena, P. B. Properties of small bimetallic Ni-Cu clusters. J. Phys. Chem. A 2001, 105, 7917–7925. [26] Hristova, E.; Dong, Y.; Grigoryan, V. G.; Springborg, M. Structural and energetic properties of Ni-Cu bimetallic clusters. J. Phys. Chem. A 2008, 112, 7905–7915. [27] Geudtner, G.; Calaminici, P.; Carmona-Espindola, J.; del Campo, J. M.; Dominguez-Soria, V. D.; Moreno, R. F.; Gamboa, G. U.; Goursot, A.; Koster, A. M.; Reveles, J. U.; Mineva, T.; Vasquez-Perez, J. M.; Vela, A.; Zuninga-Gutierrez, B.; Salahub, D. R. deMon2k. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 548–555. [28] Koster, A. M.; Geudtner, G.; Calaminici, P.; Casida, M. E.; Dominguez, V. D.; Flores-Moreno, R.; Gamboa, G. U.; Goursot, A.; Heine, T. Ipatov, A.; Janetzko, F.; del Campo, J.M.; Reveles, J. U.; Vela, A.; Zuniga-Gutierrez, B.; Salahub, D. R. deMon2k, Version 3, The deMon developers, Cinvestav, Mexico City, 2011. [29] Dunlap, B. I.; Connolly, J. W. D.; Sabin J. R. On first‐row diatomic molecules and local density models, J. Chem. Phys. 1979, 71, 4993–4999. [30] Mintmire, J. W.; Dunlap, B. I. Fitting the Coulomb potential variationally in linear-combination-of-atomic-orbitals density-functional calculations. Phys. Rev. A 1982, 25, 88–95. [31] Zhang, Y. K.; Yang, W. T. Comment on "Generalized gradient approximation made simple". Phys. Rev. Lett. 1998, 80, 890. [32] Calaminici, P.; Janetzko, F.; Koster, A. M.; Mejia-Olvera, R.; Zuniga-Gutierrez, B. Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems. J. Chem. Phys. 2007, 126. [33] Köster, A. M.; Reveles, J. U.; del Campo, J. M. Calculation of exchange-correlation potentials with auxiliary function densities. J. Chem. Phys. 2004, 121, 3417–3424. [34] Cruz-Martinez, H.; Ortiz-Balderas, C. N.; Solorza-Feria, O.; Calaminici, P. Assessment of BOMD simulations for the ground-state structure determination of transition metal clusters in the nanometer scale. Mol. Phys. 2016, 114, 1019–1025. [35] Blades, W. H.; Reber, A. C.; Khanna, S. N.; Lopez-Sosa, L.; Calaminici, P.; Koster, A. M. Evolution of the Spin Magnetic Moments and Atomic Valence of Vanadium in VCux+, VAgx+, and VAux+ Clusters (x = 3–14). J. Phys. Chem. A 2017, 121, 2990–2999. [36] Cruz-Olvera, D.; Calaminici, P. Investigation of structures and energy properties of molybdenum carbide clusters: Insight from theory. Comput. Theor. Chem. 2016, 1078, 55–64. [37] Reveles, J. U.; Koster, A. M. Geometry optimization in density functional methods. J. Comput. Chem. 2004, 25, 1109–1116. [38] Bader, R. F. W. Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, 1990. [39] VUChem-inVisu Inc, http://www.invisu.ca/en/products/vuchem.html. [40] López-Arvizu, G.; Calaminici, P. Assessment of density functional theory optimized basis sets for gradient corrected functionals to transition metal systems: The case of small Nin (n ≤5) clusters, J. Chem. Phys. 2007, 126, 194102. [41] Lu, Q. L.; Luo, Q. Q.; Chen, L. L.; Wan, J. G. Structural and magnetic properties of Nin (n = 2–21) clusters. Eur. Phys. J. D 2011, 61, 389–396. [42] Lopez-Estrada, O.; Orgaz, E. Transition states, electronic structure, and magnetic properties of small-sized nickel clusters. Phys. Rev. B 2015, 91. [43] Chaves, A. S.; Piotrowski, M. J.; Da Silva, J. L. F. Evolution of the structural, energetic, and electronic properties of the 3d, 4d, and 5d transition-metal clusters (30 TMn systems for n = 2—15): a density functional theory investigation. Phys. Chem. Chem. Phys. 2017, 19, 15484–15502. [44] Jaque, P.; Toro-Labbe, A. Characterization of copper clusters through the use of density functional theory reactivity descriptors. J. Chem. Phys. 2002, 117, 3208–3218. [45] Jug, K.; Zimmermann, B.; Calaminici, P.; Koster, A. M. Structure and stability of small copper clusters. J. Chem. Phys. 2002, 116, 4497-4507. [46] Calaminici, P.; Köster, A. M.; Russo, N.; Salahub, D. R. A density functional study of small copper clusters Cun (n ≤ 5). J. Chem. Phys. 1996, 105, 9546–9556. [47] Han, S. L.; Xue, X. L.; Nie, X. C.; Zhai, H.; Wang, F.; Sun, Q.; Jia, Y.; Li, S. F.; Guo, Z. X. First-principles calculations on the role of Ni-doping in Cun clusters: From geometric and electronic structures to chemical activities towards CO2. Phys. Lett. A. 2010, 374, 4324–4330. [48] Ichino, T.; Takagi, M.; Maeda, S. A systematic study on bond activation energies of NO, N2, and O2 on hexamers of eight transition metals. ChemCatChem 2019, 11, 1346–1353. [49] Yuan, X.; Liu, L.; Wang, X.; Yang, M.; Jackson, K. A.; Jellinek, J. Theoretical investigation of adsorption of molecular oxygen on small copper clusters. J. Phys. Chem. A 2011, 115, 8705–8712. [50] Molina, L. M.; Arranz-Simón, C.; Alonso, J. A. Mechanistic insight into the CO oxidation reaction at pure, Nb-doped and Mo-doped medium size Pt clusters. Mol. Catal. 2022, 533, 112749. [51] Dar, M. A.; Krishnamurty, S. Molecular and dissociative adsorption of oxygen on Au-Pd bimetallic clusters: role of composition and spin state of the cluster. ACS Omega 2019, 4, 12687–12695. |