[1] Yuan, X.; Shen, D.; Zhang, Q.; Zou, H.; Liu, Z.; Peng, F. Z-Scheme Bi2WO6/CuBi2O4 Heterojunction Mediated by Interfacial Electric Field for Efficient Visible-Light Photocatalytic Degradation of Tetracycline. Chem. Eng. J. 2019, 369, 292–301.
[2] Crini, G. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061–1085.
[3] Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of Dyes in Textile Effluent: A Critical Review on Current Treatment Technologies with a Proposed Alternative. Bioresource Technol. 2001, 77, 247–255.
[4] Aksu, Z. Application of Biosorption for the Removal of Organic Pollutants: A Review. Process Biochem. 2005, 40, 997–1026.
[5] Kornaros, M.; Lyberatos, G. Biological Treatment of Wastewaters from a Dye Manufacturing Company using a Trickling Filter. J. Hazard Mater. 2006, 136, 95–102.
[6] Bentahar, S.; Dbik, A.; El Khomri, M.; El Messaoudi, N.; Lacherai, A. Adsorption of Methylene Blue, Crystal Violet and Congo Red from Binary and Ternary Systems with Natural Clay: Kinetic, Isotherm, and Thermodynamic. J. Environ. Chem. Eng. 2017, 5, 5921–5932.
[7] Chatterjee, S.; Lee, M. W.; Woo, S. H. Adsorption of Congo Red by Chitosan Hydrogel Beads Impregnated with Carbon Nanotubes. Bioresour. Technol. 2010, 101, 1800–1806.
[8] Crini, G.; Badot, P. M. Application of Chitosan, a Natural Aminopolysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature. Prog. Polym. Sci. 2008, 33, 399–447.
[9] Zharim, A. Y.; Hilal, H. Treatment of Highly Concentrated Dye Solution by Coagulation/Flocculation-Sand Filtration and Nanofiltration. Water Resour. Ind. 2013, 3, 23–34.
[10] Khayet, M.; Zahrim, A. Y.; Hilal, N. Modelling and Optimization of Coagulation of Highly Concentrated Industrial Grade Leather Dye by Response Surface Methodology. Chem. Eng. J. 2011, 167, 77–83.
[11] Zhang, X. B.; Dong, W. Y.; Yang, W. Decolorization Eficiency and Kinetics of Typical Reactive Azo Dye RR2 in the Homogeneous Fe (II) Catalized Ozonation Process. Chem. Eng. J. 2013, 233, 14–23.
[12] Pak, D.; Chang, W. Decolorizing Dye Wastewater with Low Temperature Catalytic Oxidation. Water Sci. Technol. 1999, 40, 115–121.
[13] Martinez-Huitle, C. A.; Brillas, E. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. A general review. Appl. Catal. B: Environ. 2009, 87, 105–145.
[14] Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959.
[15] Chen, X. Titanium Dioxide Nanomaterials and Their Energy Applications. Chin. J. Catal. 2009, 30, 839–851.
[16] Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750.
[17] Liu, Y.; Li, Z.; Green, M.; Just, M.; Li, Y.; Chen, X. Titanium Dioxide Nanomaterials for Photocatalysis. J. Phys. D 2017, 50, 193003/1-15.
[18] Li, X.; Xia, T.; Xu, C.; Murowchick, J.; Chen, X. Synthesis and Photoactivity of Nanostructured CdS-TiO2 Composite Catalysts. Catal. Today 2014, 225, 64–73.
[19] Xia, T.; Zhang, Y.; Murowchick, J.; Chen, X. Vacuum-Treated Titanium Dioxide Nanocrystals: Optical Properties, Surface Disorder, Oxygen Vacancy, and Photocatalytic Activities. Catal. Today 2014, 225, 2–9.
[20] Byrne, C.; Subramanian, G.; Pillai, S. C. Recent Advances in Photocatalysis for Environmental Applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555.
[21] Vinodkumar, F.; Di Valentin, C.; Schneider, J.; Banhnemann, D.; Pillai, S. C. Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. J. Photochem. Photobiol. C 2015, 25, 1–29.
[22] Inagaky, M.; Nakazawa, Y.; Hirano, M.; Kobayashi, Y.; Toyoda, M. Preparation of Stable Anatase-Type TiO2 and its Photocatalytic Performance. Int. J. Inorg. Mater. 2001, 3, 809–811.
[23] Moon, J.; Takagi, H.; Fujishiro, Y.; Awano, M. Preparation and Characterization of the Sb-doped TiO2 Photocatalysts. J. Mater. Sci. 2001, 36, 949–955.
[24] Ovenstone, J. Preparation of Novel Titania Photocatalysts with High Activity. J. Mater. Sci. 2001, 36, 1325–1329.
[25] Akhtar, M. K. Xiong, Y. Pratsinis, S. E. Vapor Synthesis of Titania Powder by Titanium Tetrachloride Oxidation. Am. Inst. Chem. Eng. J. 1991, 37, 1561–1570.
[26] Chin, S.; Jurng, J.; Lee, J. H.; Moon, S. J. Catalytic Conversion of 1,2-Dichlorobenzene Using V2O5/TiO2 Catalyst by Thermal Decomposition Process Chemosphere 2009, 75, 1206–1209.
[27] Payakgul, W.; Mekasuwandumrong, O.; Pavarajarn, V.; Praserthdam, P. Effects of Reaction Medium on the Synthesis of TiO2 Nanocrystals by Thermal Decomposition of Titanium (IV) n-Butoxide. Ceram. Int. 2005, 31, 391–397.
[28] Okuyama, K.; Jeung, J. T.; Kousaka, Y.; Nguyen, H. V.; Wu, J. J.; Flagan, R. C. Experimental Control of Ultrafine TiO2 Particle Generation from Thermal Decomposition of Titanium Tetraisopropoxide Vapor. Chem. Eng. Sci. 1989, 44, 1369–1375.
[29] Kuo, C. S.; Tseng, Y. H.; Huang, C. H.; Li, Y. Y. Carbon-Containing Nano-Titania Prepared by Chemical Vapor Deposition and its Visible-Light-Responsive Photocatalytic Activity. J. Mol. Catal. 2007, 270, 93–100.
[30] Akurati, K. K.; Vital, A.; Fortunato, G.; Hany, R.; Nueesch, F.; Graule, T. Flame Synthesis of TiO2 Nanoparticles with High Photocatalytic Activity. Solid State Sci. 2007, 9, 247–257.
[31] Lee, G. W.; Choi, S. C. Thermal Stability of Heat-Treated Flame- Synthesized Anatase TiO2 Nanoparticles. J. Mater. Sci. 2008, 43, 715–720.
[32] Supphasrirongjaroen, P.; Praserthdam, P.; Panpranot, J.; Na-Ranong, D.; Mekasuwandumrong, O. Effect of Quenching Medium on Photocatalytic Activity of Nano-TiO2 Prepared by Solvothermal Method. Chem. Eng. J. 2008, 138, 622–627.
[33] Mao, C.; Zuo, F.; Hou, Y.; Bu, X.; Feng, P. In Situ Preparation of a Ti3+ Self-Doped TiO2 Film with Enhanced Activity as Photoanode by N2H4 Reduction. Angew. Chem. Int. Ed. 2014, 26, 10653–10657.
[34] Cui, H.; Zhao, W.; Yang, C.; Yin, H.; Lin, T.; Shan, Y.; Xie, Y.; Gua, H.; Huang, F. Black TiO2 Nanotube Arrays for High-Efficiency Photoelectrochemical Water-Splitting. J. Mater. Chem. A 2014, 2, 8612–8616.
[35] Song, H.; Li, C.; Lou, Z.; Ye, Z.; Zhu, L. Effective Formation of Oxygen Vacancies in Black TiO2 Nanostructures with Efficient Solar-Driven Water Splitting. ACS Sustain. Chem. Eng. 2017, 5, 8982–8987.
[36] Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X.; Jiang, M. H-doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Adv. Funct. Mater. 2013, 23, 5444–5450.
[37] Kang, Q.; Cao, J.; Zhang, Y.; Liu, L.; Xu, H.; Ye, J. Reduced TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting. J. Mater. Chem. A 2013, 1, 5766–5744.
[38] Xu, C.; Song, Y.; Lu, L.; Cheng, C.; Liu, D.; Fang, X.; Chen, X.; Zhu, X.; Li, D. Electrochemically Hydrogenated TiO2 Nanotubes with Improved Photoelectrochemical Water Splitting Performance. Nanoscale Res. Lett. 2013, 8, 391.
[39] Ghajar, S.; Sohrabi, M.R. Taguchi Experimental Design Used for Nano Photo Catalytic Degradation of the Pharmaceutical Agent Aspirin. J. Chem. Pharm. Res. 2012, 4, 814–821.
[40] Khayet, M.; Zahrim, A. Y.; Hilal, N. Modelling and Optimization of Coagulation of Highly Concentrated Industrial Grade Leather Dye by Response Surface Methodology. Chem. Eng. J. 2011, 167, 77–83.
[41] Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Silveira, V. L.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977.
[42] Chen, X.; Liu, L.; Liu, Z.; Marcus, M. A.; Wang, W.-C.; Oyler, N. A.; Grass, M. E.; Mao, B.; Glans, P.-A.; Yu, P. Y.; Guo, J.; Mao, S. S. Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation. Sci. Rep. 2013, 3, 1510.
[43] Xia, T.; Wallenmeyer, P.; Anderson, A.; Murowchick, J.; Liu, L.; Chen, X. Hydrogenated Black ZnO Nanoparticles with Enhanced Photocatalytic Performance. RSC Adv. 2014, 4, 41654–41658. |