[1]Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334, 928–935.
[2]Duan J.; Tang X.; Dai H.; Yang Y.; Wu W.; Wei X.; Huang, Y. Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review.Electrochem. Energy Rev.2019,3, 1-42.
[3]Shen, X.; Zhang, X.-Q.; Ding, F.; Huang, J.-Q.; Xu, R.; Chen, X.; Yan, C.; Su, F.-Y.; Chen, C.-M.; Liu, X.; Zhang, Q. Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect.Energy Mater. Adv. 2021,1, 1-15.
[4]Zhou L.; Zhang K.; Hu Z.; Tao Z.; Mai L.; Kang Y.-M.; Chou S.-L.; Chen J. Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium-Ion Batteries.Adv. Energy Mater.2018,8, 1701415.
[5]Ellis, B. L.; Lee, K.; Nazar, L. Positive Electrode Materials for Li-Ion and Li-Batteries.Chem. Mater.2010,22, 691-714.
[6]Mohamed N.; Allam, N. Recent advances in the design of cathode materials for Li-ion batteries.RSC Adv.2020,10, 21662-21685.
[7]Yao, J.; Li, Y.; Massé, R.; Uchaker, E.; Cao, G. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond.Energy Storage Mater. 2018,11, 205-259.
[8]Tan H. T.; Rui X.; Sun W.; Yan Q.; Lim, T. Vanadium-based nanostructure materials for secondary lithium battery applications.Nanoscale2015,7, 14595-14607.
[9]Kumagai N.; Tanno K.; Nakajima T.; Watanabe, N. Structural changes of Nb2O5 and V2O5 as rechargeable cathodes for lithium battery.Electrochim. Acta1983,28, 17-22.
[10]Dong X.; Dong F.; Zhang Y.; Fu C.; Cui C.; Wang L.; Zeng, S. Preparation of V2O5 porous microstructures with enhanced performances of lithium ion batteries.Mater. Chem. Phys.2022,277, 125489.
[11]Le S.; Li Y.; Xiao S.; Sun T.; Yao J.; Zou, Z. Enhanced reversible lithium storage property of Sn0.1V2O5 in the voltage window of 1.5-4.0 V.Solid State Ionics2019,341, 115028.
[12]Rui X.; Tang Y.; Malyi O.; Gusak A.; Zhang Y.; Niu Z.; Tan H. T.; Persson C.; Chen X.; Chen Z.; Yan, Q. Ambient dissolution-recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications.Nano Energy2016,22, 583-593.
[13]Mai L.; Xu L.; Han C.; Xu X.; Luo Y.; Zhao S.; Zhao, Y. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries.Nano Lett.2010,10, 4750-4755.
[14]Ma K.; Liu X.; Cheng Q.; Saha P.; Jiang H.; Li, C. Flexible textile electrode with high areal capacity from hierarchical V2O5 nanosheet arrays.J. Power Sources2017,357, 71-76.
[15]Yan B.; Zhong S.; Liu X.; Zhang L.; Yang, X. Growth of large-area petal-like V2O5 thin nanosheets for superior lithium storage.J. Alloys Compd.2021,875, 159899.
[16]Li Y.; Xu W.; Sun T.; Yao J. Preparation and sodium storage performance of 2D bilayered V2O5⋅nH2O nanomaterial with Zn2+ intercalation.J. Electroanal. Chem.2023,937, 117416.
[17]Suthirakun S.; Jungthawan S.; Limpijumnong, S. Effect of Sn-Doping on Behavior of Li-Intercalation in V2O5 Cathode Materials of Li-Ion Batteries: A Computational Perspective.J. Phys. Chem. C2018,122, 5896-5907.
[18]Varadaraajan V.; Satishkumar B.; Nanda J.; Mohanty, P. Direct synthesis of nanostructured V2O5 films using solution plasma spray approach for lithium battery applications.J. Power Sources2011,196, 10704-10711.
[19]Zheng, Y.; Ding, H.; Uchaker, E.; Tao, X.; Chen, J.; Zhang, Q.; Cao, G. Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium storage properties.J. Mater. Chem. A2015,3, 1979-1985.
[20]Yu H.; Rui X.; Tan H.; Chen J.; Huang X.; Xu C.; Liu W.; Yu D.; Hng H.; Hoster H. E.; Yan, Q. Cu doped V2O5 flowers as cathode material for high-performance lithium-ion batteries.Nanoscale2013,5, 4937-4943.
[21]Yao J.; Yin Z.; Zou Z.; Li, Y. Y-doped V2O5 with enhanced lithium storage performance.RSC Adv.2017,7, 32327-32335.
[22]Zhang Y.; Zou Z.; Liu J.; Zhang S.; Zhang H. Effect of Ga doping on structure and properties of V2O5 lithium-ion batteries.Mater. Technol.2020,35, 887-895.
[23]Li Z.; Zhang C.; Liu C.; Fu H.; Nan X.; Wang K.; Li X.; Ma W.; Lu X.; Cao, G. Enhanced Electrochemical Properties of Sn-doped V2O5 as a Cathode Material for Lithium Ion Batteries.Electrochim. Acta2016,222, 1831-1838.
[24]Huang J.; Chen Q.; Chen S.; Luo L.; Li J.; Lin C.; Chen, Y. Al3+-doped FeNb11O29 anode materials with enhanced lithium-storage performance.Adv. Compos. Hybrid Mater.2021,4, 733-742.
[25]Liu Z.; Ping, Y. Optoelectronic performances on different structures of Al-doped ZnO.J. Am. Ceram. Soc.2018,101, 5615-5626.
[26]Zhan D.; Liang Y.; Cui P.; Xiao, Z. Al-doped LiMn2O4 single crystalline nanorods with enhanced elevated-temperature electrochemical performance via a template-engaged method as a cathode material for lithium ion batteries.RSC Adv.2015,5, 6372-6367.
[27]Ding Y.; Xie J.; Cao G.; Zhu T.; Yu H.; Zhao, X. Enhanced Elevated-Temperature Performance of Al-Doped Single- Crystalline LiMn2O4 Nanotubes as Cathodes for Lithium Ion Batteries.J. Phys. Chem. C2011,115, 9821-9815.
[28]Wang J.; Li Z.; Yang J.; Tang J.; Yu J.; Nie W.; Lei G.; Xiao, Q. Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries.Electrochim. Acta2012,75, 115-122.
[29]Li Y.; Yao J.; Uchaker E.; Yang J.; Huang Y.; Zhang M.; Cao, G. Leaf-Like V2O5 Nanosheets Fabricated by a Facile Green Approach as High Energy Cathode Material for Lithium-Ion Batteries.Adv. Energy Mater.2013,3, 1171-1175.
[30]Li Y.; Ji J.; Yao J.; Zhang Y.; Huang B.; Cao G. Sodium ion storage performance and mechanism in orthorhombic V2O5 single-crystalline nanowires.Sci. China Mater.2020,64, 557-570.
[31]Zhu K.; Qiu H.; Zhang Y.; Zhang D.; Chen G.; Wei, Y. Synergetic effects of Al3+ doping and graphene modification on the electrochemical performance of V2O5 cathode materials.ChemSusChem2015,8, 1017-1025.
[32]Li Y.; Huang Y.; Zheng Y.; Huang R.; Yao J. Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries.J. Power Sources2019,416, 62-71.
[33]Song H.; Liu C.; Zhang C.; Cao, G. Self-doped V4+-V2O5 nanoflake for Li-ion intercalation with enhanced rate and cycling performance.2016,22, 1-10.
[34]Zhang, Y.; Liu, N. Nanostructured Electrode Materials for High-Energy Rechargeable Li, Na and Zn Batteries.Chem. Mater. 2017,29, 9589-9604.
[35]Raju V.; Rains J.; Gates C.; Luo W.; Wang X.; Stickle W.; Stucky G.; Ji, X. Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition.Nano Lett.2014,14, 4119-4124.
[36]Wang Z.; Xu D.; Wang L.; Zhang X. Facile and Low-Cost Synthesis of Large-Area Pure V2O5 Nanosheets for High-Capacity and High-Rate Lithium Storage over a Wide Temperature Range.ChemPlusChem2012,77, 124-128.
[37]Cheng J.; Wang B.; Xin H.; Yang G.; Cai H.; Nie F.; Huang, H. Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries.J. Mater. Chem. A2013,1, 10814-10820.
[38]Wu L.; Zhang Y.; Li B.; Wang P.; Fan L.; Zhang N.; Sun, K. N doped carbon coated V2O5 nanobelt arrays growing on carbon cloth toward enhanced performance cathodes for lithium ion batteries.RSC Adv.2018,8, 6540-6543.
[39]Gao X.; Zhu X.; Le S.; Yan D.; Qu C.; Feng Y.; Sun K.; Liu, Y. Boosting High-Rate Lithium Storage of V2O5 Nanowires by Self-Assembly on N-Doped Graphene Nanosheets.ChemElectroChem2016,3, 1730-1736.
[40]Le S.; Wen S.; Zou Z.; Li Y. Effect of La Doping on the Structure and Lithium Storage Performance of V2O5.J. Nanosci. Nanotechnol.2019,19, 7421-7426.
[41]Gao X.; Liu Y.; Zhu X.; Yan D.; Wang C.; Feng Y.; Sun, K. V2O5 nanoparticles confined in Three-Dimensionally organized, porous Nitrogen-Doped graphene frameworks: Flexible and Free-Standing cathodes for high performance lithium storage.Carbon2018,140, 218-226.
[42]Xu W.; Li Y.; Yao J.; Zhu Q.; Liu B. Lithium storage behavior and mechanism of hexagonal FePO4/C composite as a novel anode material for lithium-ion batteries.J. Alloys Compd.2023,933, 167766.
[43]Xu W.; Li Y.; Yao J.; Xiao S.; Liu, B. LiFePO4/rGO composite prepared from the leaching liquor of jarosite residue as a cathode material for lithium-ion batteries.J. Alloys Compd.2023,952, 170105.
[44]Reddy M.; Subba R.; Chowdari B. Preparation and Characterization of LiNi0.5Co0.5O2 and LiNi0.5Co0.4Al0.1O2 by Molten Salt Synthesis for Li Ion Batteries.J. Phys. Chem. C2007,111, 11712-11720.
[45]Feng L.; Zhang W.; Xu L.; Li D.; Zhang, Y. Selecting the optimal calcination conditions for preparing LiV3O8 crystal.Solid State Sci.2020,103, 106187." |