[1] Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. In Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks. John Wiley & Sons, 2019.
[2] Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[3] Rowsell, J. L.; Yaghi, O. M. Metal-organic frameworks: a new class of porous materials. Micr. Mes. Mat. 2004, 73, 3–14.
[4] Tan, K.; Nijem, N.; Gao, Y.; Zuluaga, S.; Li, J.; Thonhauser, T.; Chabal, Y. J. Water interactions in metal organic frameworks. CrystEngComm 2015, 17, 247–260.
[5] Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A.G., Wood, P.A.; Ward, S.C. and Fairen-Jimenez, D. Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 2017, 29, 2618–2625.
[6] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.
[7] Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D.; Zhao, D.; Zhuang, W.; Zhou, H. C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066.
[8] Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612.
[9] Khan, N. A.; Hasan, Z.; Jhung, S. H. Adsorptive removal of hazardous materials using metal–organic frameworks (MOFs): a review. J. Hazard Mater. 2013, 244, 444–456.
[10] McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydro- phobic metal-organic framework. Angew. Chem. Int. Ed. 2010, 49, 6260–6266.
[11] Li, S. L.; Xu, Q. Metal-organic frameworks as platforms for clean energy. Energ. Environ. Sci. 2013, 6, 1656–1683.
Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R.; Liu, J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 2308–2322.
[12] Editorial Staff. Frameworks for Commercial Success. Nat. Chem. 2016, 8, p. 987.
[13] Kim, H.; Yang, S.; Narayanan, S.; Umans, A. S.; Wang, E. N.; Rao, S. R. Sorption–based Atmospheric Water Harvesting Device. US 10,640,954, 2020.
[14] Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 2014, 43, 5594–5617.
[15] Nandasiri, M. I.; Jambovane, S. R.; McGrail, B. P.; Schaef, H. T.; Nune, S. K. Adsorption, separation, and catalytic properties of densified metal-organic frameworks. Coord. Chem. Rev. 2016, 311, 38–52.
[16] Ren, J.; Langmi, H. W.; North, B. C.; Mathe, M. Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energ. Res. 2015, 39, 607–620.
[17] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150.
[18] Hendon, C. H.; Walsh, A. Chemical principles underpinning the performance of the metal-organic framework HKUST-1. Chem. Sci. 2015, 6, 3674–3683.
[19] Mohideen, M. I. H.; Xiao, B.; Wheatley, P. S.; McKinlay, A. C.; Li, Y.; Slawin, A. M.; Aldous, D. W.; Cessford, N. F.; Düren, T.; Zhao, X.; Gill, R. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework. Nat. Chem. 2011, 3, 304–310.
[20] McHugh, L. N.; McPherson, M. J.; McCormick, L. J.; Morris, S. A.; Wheatley, P. S.; Teat, S. J.; McKay, D.; Dawson, D. M.; Sansome, C. E.; Ashbrook, S. E.; Stone, C. A. Hydrolytic stability in hemilabile metal-organic frameworks. Nat. Chem. 2018, 10, 1096–1102.
[21] Dawson, D. M.; Jamieson, L. E.; Mohideen, M. I. H.; McKinlay, A. C.; Smellie, I. A.; Cadou, R.; Keddie, N. S.; Morris, R. E. and Ashbrook, S. E. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1. Phys. Chem. Chem. Phys. 2013, 15, 919–929.
[22] Dawson, D. M.; Sansome, C. E.; McHugh, L. N.; McPherson, M. J.; McPherson, L. J. M.; Morris, R. E.; Ashbrook, S. E. 13C NMR of “crumple zone” Cu(II) isophthalate metal-organic frameworks. Solid State Nucl. Mag. 2019, 101, 44–50.
[23] Makal, T. A.; Li, J. R.; Lu, W.; Zhou, H. C. Methane storage in advanced porous materials. Chem. Soc. Rev. 2012, 41, 7761–7779.
[24] Yang, S.; Sun, J.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E.; Tang, C. C.; Schröder, M. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat. Chem. 2012, 4, 887–894.
[25] Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. J. Am. Chem. Soc. 2013, 135, 1193–1196.
[26] Low, J. J.; Benin, A. I.; Jakubczak, P.; Abrahamian, J. F.; Faheem, S. A.; Willis, R. R. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J. Am. Chem. Soc. 2009, 131, 15834–15842.
[27] Bellarosa, L.; Castillo, J. M.; Vlugt, T.; Calero, S.; López, N. On the mechanism behind the instability of isoreticular metal-organic frameworks (irmofs) in humid environments. Chem.-Eur. J. 2012, 18, 12260–12266.
[28] De Toni, M.; Jonchiere, R.; Pullumbi, P.; Coudert, F. X.; Fuchs, A. H. How Can a Hydrophobic MOF be Water-Unstable? Insight into the Hydration Mechanism of IRMOFs. ChemPhysChem 2012, 13, 3497–3503.
[29] Worrall, S. D.; Bissett, M. A.; Hill, P. I.; Rooney, A. P.; Haigh, S. J.; Attfield, M. P.; Dryfe, R. A. Metal-organic framework templated electrodeposition of functional gold nanostructures. Electrochim. Acta 2016, 222, 361–369.
[30] Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S. Local structure of framework Cu(II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chem. Mat. 2006, 18, 1337–1346.
[31] Chowdhury, P.; Bikkina, C.; Meister, D.; Dreisbach, F.; Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Micropor. Mesopor. Mat. 2009, 117, 406–413.
[32] Tian, T.; Zeng, Z.; Vulpe, D.; Casco, M. E.; Divitini, G.; Midgley, P. A.; Silvestre-Albero, J.; Tan, J. C.; Moghadam, P. Z. and Fairen-Jimenez, D. A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nat. Mat. 2018, 17, 174–179.
[33] Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J. T.; Farha, O. K.; Yildirim, T. Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 2013, 135, 11887–11894.
[34] Todaro, M.; Buscarino, G.; Sciortino, L.; Alessi, A.; Messina, F.; Taddei, M.; Ranocchiari, M.; Cannas, M.; Gelardi, F. M. Decomposition process of carboxylate MOF HKUST-1 unveiled at the atomic scale level. J. Phys. Chem. C 2016, 120, 12879–12889.
[35] Todaro, M.; Alessi, A.; Sciortino, L.; Agnello, S.; Cannas, M.; Gelardi, F. M.; Buscarino, G. Investigation by Raman spectroscopy of the decomposition process of HKUST-1 upon exposure to air. J. Spectrosc. 2016.
[36] Todaro, M.; Sciortino, L.; Gelardi, F. M. and Buscarino, G. Determination of Geometry Arrangement of Copper Ions in HKUST-1 by XAFS during a Prolonged Exposure to Air. J. Phys. Chem. C 2017, 121, 24853–24860.
[37] Decoste, J. B.; Peterson, G. W.; Smith, M. W.; Stone, C. A.; Willis, C. R. Enhanced stability of Cu-BTC MOF via perfluorohexane plas-ma-enhanced chemical vapor deposition. J. Am. Chem. Soc. 2012, 134, 1486–1489.
[38] Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Micropor. Mesopor. Mat. 2009, 120, 325–330.
[39] Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J.; Walton, K. S. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513–6519.
[40] DeCoste, J. B.; Peterson, G. W.; Schindler, B. J.; Killops, K. L.; Browe, M. A.; Mahle, J. J. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mat. Chem. A 2013, 1, 11922–11932.
[41] Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem. Mat. 2012, 24, 3153–3167.
[42] Pöppl, A.; Jee, B.; Icker, M.; Hartmann, M.; Himsl, D. Untersuchungen zur chemischen Stabilität von Cu3(btc)2 (HKUST-1) durch N2-Adsorption, Röntgenpulverdiffraktometrie und EPR-Spektroskopie. Chem-Ing-Tech 2010, 82, 1025–1029.
[43] Jee, B. Cw and Pulsed EPR Spectroscopy of Cu (II) and V (IV) in Metal-Organic Framework Compounds: Metal Ion Coordination and Adsorbate Interactions, Ph.D. Dissertation, Universität Leipzig, Leipzig, Germany, 2013.
[44] Mazaj, M.; Čendak, T.; Buscarino, G.; Todaro, M.; Logar, N.Z. Confined crystallization of a HKUST-1 metal-organic framework within mesostructured silica with enhanced structural resistance towards water. J. Mat. Chem. A 2017, 5, 22305–22315.
[45] Gul-E-Noor, F.; Michel, D.; Krautscheid, H.; Haase, J.; Bertmer, M. Time dependent water uptake in Cu3(btc)2 MOF: Identification of different water adsorption states by 1H MAS NMR. Micropor. Mesopor. Mat. 2013, 180, 8–13.
[46] Castillo, J. M.; Vlugt, T. J.; Calero, S. Understanding water adsorption in Cu-BTC metal-organic frameworks. J. Phys. Chem. C 2008, 112, 15934–15939.
[47] Panella, B.; Hirscher, M.; Pütter, H.; Müller, U. Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv. Funct. Mater. 2006, 16, 520–524.
[48] Wang, Q. M.; Shen, D.; Bülow, M.; Lau, M. L.; Deng, S.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Metallo-organic molecular sieve for gas separation and purification. Micropor. Mesopor. Mater. 2002, 55, 217–230.
[49] Schlichte, K.; Kratzke, T.; Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Micropor. Mesopor. Mater. 2004, 73, 81–88.
[50] Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. Mapping the Cu-BTC metal-organic framework HKUST-1 stability envelope in the presence of water vapour for CO2 adsorption from flue gases Chem. Eng. J. 2015, 281, 669–677.
[51] Kim, H. K.; Yun, W. S.; Kim, M. B.; Kim, J. Y.; Bae, Y. S.; Lee, J.; Jeong, N. C. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009–10015.
[52] Grajciar, L.; Bludsky, O.; Nachtigall, P. Water adsorption on coordinatively unsaturated sites in CuBTC MOF. J. Phys. Chem. Lett. 2010, 1, 3354–3359.
[53] Toda, J.; Fischer, M.; Jorge, M.; Gomes, J. R. Water adsorption on a copper formate paddlewheel model of CuBTC: A comparative MP2 and DFT study. Chem. Phys. Lett. 2013, 587, 7–13.
[54] Xue, W.; Zhang, Z.; Huang, H.; Zhong, C.; Mei, D. Theoretical Insight into the Initial Hydrolytic Breakdown of HKUST-1. J. Phys. Chem. C 2019, 124, 1991–2001.
[55] Terracina, A.; Todaro, M.; Mazaj, M.; Agnello, S.; Gelardi, F. M. and Buscarino, G. Unveiled the Source of the Structural Instability of HKUST-1 Powders upon Mechanical Compaction: Definition of a Fully Preserving Tableting Method. J. Phys. Chem. C 2018, 123, 1730–1741.
[56] Giovine, R.; Pourpoint, F.; Duval, S.; Lafon, O.; Amoureux, J. P.; Loiseau, T.; Volkringer, C. The Surprising Stability of Cu3(btc)2 Metal-Organic Framework under Steam Flow at High Temperature. Cryst. Growth Des. 2018, 18, 6681–6693.
[57] Gul-E-Noor, F.; Jee, B.; Pöppl, A.; Hartmann, M.; Himsl, D.; Bertmer, M. Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 2011, 13, 7783–7788.
[58] St. Petkov, P.; Vayssilov, G. N.; Liu, J.; Shekhah, O.; Wang, Y.; Wöll, C.; Heine, T. Defects in MOFs: a thorough characterization. ChemPhysChem 2012, 13, 2025–2029.
[59] Terracina, A.; McHugh, L. N.; Todaro, M.; Agnello, S.; Wheatley, P. S.; Gelardi, F. M.; Morris, R. E.; Buscarino, G. Multitechnique Analysis of the Hydration in Three Different Copper Paddle-Wheel Metal-Organic Frameworks. J. Phys. Chem. C 2019, 123, 28219–28232.
[60] Wang, T.; Zhu, H.; Zeng, Q. and Liu, D. Strategies for Overcoming Defects of HKUST-1 and Its Relevant Applications. Adv. Mater. Interfaces 2019, 6, 1900423.
[61] Safy, M. E.; Amin, M.; Haikal, R. R.; Elshazly, B.; Wang, J.; Wang, Y.; Wöll, C.; Alkordi, M. H. Probing the Water Stability Limits and Degradation Pathways of Metal-Organic Frameworks (MOFs). Chem.-Eur. J. 2020.
[62] Pöppl, A.; Kunz, S.; Himsl, D.; Hartmann, M. CW and Pulsed ESR Spectroscopy of Cupric Ions in the Metal-Organic Framework Compound Cu3(BTC)2. J. Phys. Chem. C 2008, 112, 2678–2684.
[63] Carné‐Sánchez, A.; Stylianou, K. C.; Carbonell, C.; Naderi, M.; Imaz, I. and Maspoch, D. Protecting Metal-Organic Framework Crystals from Hydrolytic Degradation by Spray-Dry Encapsulating Them into Polystyrene Microspheres. Adv. Mater. 2015, 27, 869–873.
[64] Lin, Z.; Lv, Z.; Zhou, X.; Xiao, H.; Wu, J.; Li, Z. Postsynthetic strategy to prepare ACN@Cu-BTCs with enhanced water vapor stability and CO2/CH4 separation selectivity. Ind. Eng. Chem. Res. 2018, 57, 3765–3772.
[65] Müller, K.; Vankova, N.; Schöttner, L.; Heine, T. and Heinke, L. Dissolving uptake-hindering surface defects in metal-organic frameworks. Chem. Sci. 2019, 10, 153–160.
[66] Majano, G.; Martin, O.; Hammes, M.; Smeets, S.; Baerlocher, C. and Pérez‐Ramírez, J. Solvent–Mediated Reconstruction of the Metal-Organic Framework HKUST-1 (Cu3(BTC)2). Adv. Funct. Mater. 2014, 24, 3855–3865.
[67] Sun, X.; Li, H.; Li, Y.; Xu, F.; Xiao, J.; Xia, Q.; Li, Y.; Li, Z. A novel mechanochemical method for reconstructing the moisture-degraded HKUST-1. Chem. Commun. 2015, 51, 10835–10838.
[68] Das, S. K.; Chatterjee, S.; Bhunia, S.; Mondal, A.; Mitra, P.; Kumari, V.; Pradhan, A. and Bhaumik, A. A new strongly paramagnetic ce-rium-containing microporous MOF for CO2 fixation under ambient conditions. Dalton Trans. 2017, 46, 13783–13792.
[69] Gumilar, G.; Kaneti, Y. V.; Henzie, J.; Chatterjee, S.; Na, J.; Yuliarto, B.; Nugraha, N.; Patah, A.; Bhaumik, A. and Yamauchi, Y. General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal-organic frameworks for electrochemical non-enzymatic glucose sensing. Chem. Sci. 2020 11, 3644–3655. |