[1] (a) Plahovinsak, J.; Perry, M.; Knostman, K.; Segal, R.; Babin, M. Characterization of a nose-only inhaled phosgene acute lung injury mouse model. Inhal. Toxicol. 2015, 27, 832–840;
(b) Li, W.; Rosenbruch, M.; Pauluhn, J. Effect of PEEP on phosgene-induced lung edema: pilot study on dogs using protective ventilation strategies. Exp. Toxical. Pathol. 2015, 67, 109–116;
(c) Holmes, W.; Keyser, B.; Paradiso, D.; Ray, R.; Andres, D.; Benton, B.; Rothwell, C.; Hoard-Fruchey, H.; Dillman, J.; Sciuto, A.; Anderson, D. Conceptual approaches for treatment of phosgene i nhalation-induced lung injury. Toxicol. Lett. 2016, 244, 8–20.
[2] (a) Chen, L.; Wu, D.; Yoon, J. Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens. 2018, 3, 27–43;
(b) Wu, D.; Sedgwick, A.; Gunnlaugsson, T.; Akkaya, E.; Yoon, J.; James, T. Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123;
(c) Tan, J.; Li, Z.; Lu, Z.; Chang, R.; Sun, Z.; You, J. Recent progress in the development of chemodosimeters for fluorescence visualization of phosgene. Dyes Pigments 2021, 193, 109540;
(d) Zhu, B.; Sheng, R.; Chen, T.; Rodrigues, J.; Song, Q.; Hu, X.; Zeng, L. Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord. Chem. Rev. 2022, 463, 214527.
[3] (a) Xia, H.; Xu, X.; Song, Q. BODIPY-based fluorescent sensor for the recognization of phosgene in solutions and in gas phase. Anal. Chem. 2017, 89, 4192–4197;
(b) Sayar, M.; Karakus, E.; Güener, T.; Yildiz, B.; Yildiz, U.; Emrullahoğlu, M. A BODIPY-based fluorescent probe to visually detect phosgene: toward the development of a handheld phosgene detector. Chem. Eur. J. 2018, 24, 3136–3140;
(c) Hu, Y.; Chen, L.; Jung, H.; Zeng, Y.; Lee, S.; Swamy, K.; Zhou, X.; Kim, M. H.; Yoon, J. Effective strategy for colorimetric and fluorescence sensing of phosgene based on small organic dyes and nanofiber platforms. ACS Appl. Mater. Interfaces 2016, 8, 22246–22252;
(d) Xia, H.; Xu, X.; Song, Q. Fluorescent chemosensor for selective detection of phosgene in solutions and in gas phase. ACS Sens. 2017, 2, 178–182;
(e) Zhang, Y.; Peng, A.; Jie, X.; Lv, Y.; Wang, X.; Tian, Z. A BODIPY-based fluorescent probe for detection of subnanomolar phosgene with rapid response and high selectivity. ACS Appl. Mater. Interfaces 2017, 9, 13920–13927;
(f) Zhou, X.; Zeng, Y.; Liyan, C.; Wu, X.; Yoon, J. A Fluorescent Sensor for Dual-Channel Discrimination between Phosgene and a Nerve-Gas Mimic. Angew. Chem. Int. Ed. 2016, 55, 4729–4733;
(g) Kim, T.; Kim, D.; Bouffard, J.; Kim, Y. Rapid, specific, and ultrasensitive fluorogenic sensing of phosgene through an enhanced PeT mechanism. Sens. Actuators B 2019, 283, 458–462.
[4] Zhang, W.; Cheng, K.; Yang, X.; Li, Q.; Zhang, H.; Ma, Z.; Lu, H.; Wu, H.; Wang, X. A benzothiadiazole-based fluorescent sensor for selective detection of oxalyl chloride and phosgene. Org. Chem. Front. 2017, 4, 1719–1725.
[5] Kim, T.; Hwang, B.; Bouffard, J.; Kim. Y. Instantaneous Colorimetric and Fluorogenic Detection of Phosgene with a me-so-Oxime-BODIPY. Anal. Chem. 2017, 89, 12837–12842.
[6] Kundu, P.; Hwang, K. Rational design of fluorescent phosgene sensors. Anal. Chem. 2012, 84, 4594–4597.
[7] (a) Wu, X.; Wu, Z.; Yang, Y.; Ha, S. A highly sensitive fluorogenic chemodosimeter for rapid visual detection of phosgene. Chem. Commun. 2012, 48, 1895–1897.;
(b) Hu, Y.; Zhou, X.; Jung, H.; Nam, S.; Kim, M.; Yoon, J. Colorimetric and fluorescent detecting phosgene by a second-generation chemosensor. Anal. Chem. 2018, 90, 3382–3386.
[8] Xie, H.; Wu, Y.; Zeng, F.; Chen, J.; Wu, S. An AIE-based fluorescent test strip for the portable detection of gaseous phosgene. Chem. Commun. 2017, 53, 9813–9816.
[9] Wang, S.; Zhong, L.; Song, Q. A ratiometric fluorescent chemosensor for selective and visual detection of phosgene in solutions and in the gas phase. Chem. Commun. 2017, 53, 1530–1533.
[10] Chen, L.; Wu, D.; Kim, J.; Yoon, J. An ESIPT-based fluorescence probe for colorimetric, ratiometric, and selective detection of phosgene in solutions and the gas phase. Anal. Chem. 2017, 89, 12596–12601.
[11] Hu, Q.; Duan, C.; Wu, J.; Su, D.; Zeng, L.; Sheng, R. Colorimetric and ratiometric chemosensor for visual detection of gaseous phosgene based on anthracene carboxyimide membrane. Anal. Chem. 2018, 90, 8686–8691.
[12] (a) Wu, J.; Su, D.; Li, W.; Xia, C.; Rodrigues, J.; Sheng, R.; Zeng, L. A fast responsive chromogenic and near-infrared fluorescence lighting-up probe for visual detection of toxic thiophenol in environmental water and living cells. Talanta 2019, 201, 111–118.;
(b) Ye, Z.; Duan, C.; Sheng, R.; Xu, J.; Wang, H.; Zeng, L. A novel colorimetric and ratiometric fluorescent probe for visualizing SO2 derivatives in environment and living cells. Talanta 2018, 176, 389–396;
(c) Sheng, R.; Ma, J.; Wang, P.; Liu, W.; Wu, J.; Li, H.; Zhuang, X.; Zhang, H.; Wu, S. Enzyme sensing based on a controllable oxidation reaction. Biosens. Bioelectron. 2010, 26, 949–952;
(d) Xu, J.; Niu, G.; Wei, X.; Lan, M.; Zeng, L.; Kinsella, J.; Sheng, R. A family of multi-color anthracene carboxyimides: Synthesis, spectroscopic properties, solvatochromic fluorescence and bio-imaging application. Dyes Pigments 2017, 139, 166–173.
[13] Adaikalam Shylaja, A.; Roja, S.; Priya, R.; Kumar, R. Four- Component Domino Synthesis of Pyrazolo[3,4-h] quinoline-3- carbonitriles: “Turn-Off” Fluorescent Chemosensor for Fe3+ Ions. J. Org. Chem. 2018, 83, 14084–14090.
[14] Yan, J.; Lee, S.; Zhang, A.; Yoon, J. Self-immolative colorimetric, fluorescent and chemiluminescent chemosensors. Chem. Soc. Rev. 2018, 47, 6900–6916.
[15] Ye, H.; Ke, Y.; Yue, C.; Xie, P.; Sheng, R.; Zeng, L. 5G smartphone- adaptable fluorescence sensing platform for simultaneous detection of toxic formaldehyde and phosgene in different emission channels. Dyes Pigments 2022, 207, 110782.
[16] Long, Y.; Qian, R. Wearable chemosensors: A review of recent progress. ChemistryOpen 2018, 7, 118–130. |