Please wait a minute...
 Home  Guidelines for Reviewers About the Journal News Editorial Board Aims & Scope Peer Review Policy Subscription Contact us Announcement
Early Edition  //  Current Issue  //  Archives  //  Most Read
General Chemistry
Hotspot |
The Central Role of Chemistry in the Transition to Solar Economy: Outcomes of Two Lectures at the Russian Academy of Sciences
Mario Pagliaro*
Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
Download: PDF(930 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Abstract  On June 8 and 9, 2017, I gave two invited lectures at the Zelinsky Institute of Organic Chemistry (ZIOC) of the Russian Academy of Sciences, Moscow. The first lecture, “Sol-Gel Catalysts: Making Green Chemistry Possible”, focused on the practical outcomes of 25 years of research on sol-gel entrapped catalysts. The second, “Chemistry for the Bioeconomy: From Discussion to Action”, offered a critical insight to the forthcoming bioeconomy. Both lectures aroused much interest in the audience and ended with a vigorous discussion lasting about one hour. An outlook is provided in this study, whose core argument is that in the transition to the solar bioeconomy, chemistry will play a central role. In the latter economy, sunlight, water and wind replace fossil fuels to generate electricity that is then used for all energy end uses, while biomass replaces petroleum as raw material of the chemical industry with the oil refinery becoming a biorefinery.
Keywords sol-gel      solar energy      bioeconomy      catalysis      nanochemistry     
Corresponding Authors: Email: (M. P.)   
Just Accepted Date: 18 May 2020   Online First Date: 18 May 2020   
E-mail this article
E-mail Alert
Articles by authors
Mario Pagliaro
Cite this article:   
Mario Pagliaro. The Central Role of Chemistry in the Transition to Solar Economy: Outcomes of Two Lectures at the Russian Academy of Sciences[J]. General Chemistry, 18 May 2020. [Epub ahead of print] doi: 10.21127/yaoyigc20200007.
[1] Ciriminna, R.; Falletta, E.; Della Pina, C.; Teles, J. H.; Pagliaro, M. Industrial Applications of Gold Catalysis. Angew. Chem. Int. Ed. 2016, 55, 14210–14217.
[2] Ciriminna, R.; Ilharco, L. M.; Pandarus, V.; Fidalgo, A.; Béland, F.; Pagliaro, M. Towards waste free organic synthesis using nano- structured hybrid silicas. Nanoscale 2014, 6, 6293–6300.
[3] Avnir, D. Acc. Chem. Res. 1995, 28, 328–334.
[4] Pagliaro, M.; Pandarus, V.; Béland, F.; Ciriminna, R.; Palmisano, G.; Demma Carà, P. A new class of heterogeneous Pdcatalysts for synthetic organic chemistry. Catal. Sci. Technol. 2011, 1, 736–739.
[5] Pandarus, V.; Ciriminna, R.; Béland, F.; Pagliaro, M. A New Class of Heterogeneous Platinum Catalysts for the Chemoselective Hydrogenation of Nitroarenes. Adv. Synth. Catal. 2011, 353, 1306–1316.
[6] Ciriminna, R.; Pandarus, V.; Gingras, G.; Béland, F.; Pagliaro, M. Closing the Organosilicon Synthetic Cycle: Efficient Hetero- geneous Hydrosilylation of Alkenes over SiliaCat Pt(0). ACS Sustain. Chem. Eng. 2013, 1, 249–253.
[7] Pandarus, V.; Ciriminna, R.; Béland, F.; Pagliaro, M. Selective hydrogenation of functionalized nitroarenes under mild condi-tions. Catal. Sci. Technol. 2011, 1, 1616–1623.
[8] Ciriminna, R.; Pandarus, V.; Béland, F.; Pagliaro, M. Fine chemical syntheses under flow using SiliaCat catalysts. Catal. Sci. Technol. 2016, 6, 4678–4685.
[9] Pandarus, V.; Gingras, G.; Béland, F.; Ciriminna, R.; Pagliaro, M. Selective Hydrogenation of Vegetable Oils over SiliaCat Pd(0). Org. Process Res. Dev. 2012, 16, 1307–1311.
[10] Simakova, L.; Simakova, O. A.; Romanenko, A. V.; Murzin, D. Yu. Hydrogenation of Vegetable Oils over Pd on Nanocomposite Carbon Catalysts. Ind. Eng. Chem. Res. 2008, 47, 7219–7225.
[11] Pandarus, V.; Ciriminna, R.; Beland, F.; Pagliaro, M.; Kaliaguine, S. Solvent-Free Chemoselective Hydrogenation of Squalene to Squalane. ACS Omega 2017, 2, 3989–3996.
[12] Ciriminna, R.; Scandura, G.; Pandarus, V.; Delisi, R.; Scurria, A.; Béland, F.; F. Palmisano, G.; Pagliaro, M. Towards the Broad Utilization of Gold Nanoparticles Entrapped in Organosilica. ChemCatChem 2017, 9, 1322–1328.
[13] Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Ilharco, L. M.; Pagliaro, M. New Catalyst Series from the Sol-Gel‐Entrapment of Gold Nanoparticles in Organically Modified Silica Matrices: Proof of Performance in a Model Oxidation Reaction. ChemCatChem 2015, 7, 254–260.
[14] Adhikary, J.; Meistelman, M.; Burg, A.; Shamir, D.; Meyerstein, D.; Albo, Y. Reductive Dehalogenation of Monobromo and Tribromo acetic Acid by Sodium Borohydride Catalyzed by Gold Nano- particles Entrapped in Sol-Gel Matrices Follows Different Pathways. Eur. J. Inorg. Chem. 2017, 2017, 1510–1515.
[15] Meistelman, M.; Adhikary, J.; Burg, A.; Shamir, D.; Gershinsky, G.; Meyerstein, D.; Albo, Y. Ag0 and Au0 Nanoparticles Encapsulated in Sol–Gel Matrices as Catalysts in Reductive De-halogenation Reactions. Chim. Oggi 2017, 35, 23–26.
[16] Lebedev, O. L.; Kazarnowsky, S. N. Treatises on Chemistry and Chemical Technology Gorki 1959, 3, 649 (in Russian).
[17] Ciriminna, R.; Pagliaro, M. Industrial Oxidations with Organo- catalyst TEMPO and Its Derivatives. Org. Process Res. Dev. 2010, 14, 245–251.
[18] Michaud, A.; Gingras, G.; Morin, M.; Béland, F.; Ciriminna, R.; Avnir, D.; Pagliaro, M. SiliaCat TEMPO:  An Effective and Useful Oxidizing Catalyst. Org. Process Res. Dev. 2007, 11, 766–768.
[19] Pandarus, V.; Ciriminna, R.; Béland, F.; Gingras, G.; Drobot, M.; Jina, O.; Pagliaro, M. Greening heterogeneous catalysis for fine chemicals. Tetrahedron Lett. 2013, 54, 1129–1132.
[20] Pagliaro, M.; Ciriminna, R. New recyclable catalysts for aerobic alcohols oxidation: sol-gel ormosils doped with TPAP. Tetrahedron Lett. 2001, 42, 4511–4514.
[21] Campestrini, S.; Carraro, M.; Ciriminna, R.; Pagliaro, M.; Tonellato, U. Alcohols oxidation with hydrogen peroxide promoted by TPAP-doped ormosils. Tetrahedron Lett. 2004, 45, 7283–7286.
[22] Ciriminna, R.; Campestrini, S.; Pagliaro, M. FluoRuGel: a versatile catalyst for aerobic alcohol oxidation in supercritical carbon dioxide. Org. Biomol. Chem. 2006, 4, 2637–2641.
[23] Lemay, M.; Pandarus, V.; Simard, M.; Marion, O.; Tremblay, L.; Béland, F. SiliaCat S-Pd and SiliaCat DPP-Pd: Highly Reactive and Reusable Heterogeneous Silica-Based Palladium Catalysts. Top. Catal. 2010, 53, 1059–1062.
[24] Pandarus, V.; Desplantier-Giscard, D.; Gingras, G.; Béland, F.; Ciriminna, R.; Pagliaro, M. Greening the Valsartan Synthesis: Scale-up of Key Suzuki-Miyaura Coupling over SiliaCat DPP-Pd. Org. Process Res. Dev. 2013, 17, 1492–1497.
[25] Martin, D.; Siamaki, A. R.; Belecki, K.; Gupton, B. F. A Flow-Based Synthesis of Telmisartan. J. Flow Chem. 2015, 5, 145–147.
[26] Greco, R.; Goessler, W.; Cantillo, D.; Kappe, C. O. Benchmarking Immobilized Di- and Triarylphosphine Palladium Catalysts for Continuous-Flow Cross-Coupling Reactions: Efficiency, Durability, and Metal Leaching Studies. ACS Catal. 2015, 5, 1303–1312.
[27] de M. Muñoz, J.; Alcázar, J.; de la Hoz, A.; Díaz-Ortiz, A. Cross‐ Coupling in Flow using Supported Catalysts: Mild, Clean, Efficient and Sustainable Suzuki-Miyaura Coupling in a Single Pass. Adv. Synth. Catal. 2012, 354, 3456–3460.
[28] Ananikov, V. P.; Beletskaya, I. P. Toward the Ideal Catalyst: From Atomic Centers to a “Cocktail” of Catalysts. Organometallics 2012, 31, 1595–1604.
[29] Pandarus, V.; Gingras, G.; Béland, F.; Ciriminna, R.; Pagliaro, M. Efficient Screening and Library Generation in Parallel C—C Coupling Reactions Mediated by Organosilica SiliaCat Palladium Catalysts. Org. Process Res. Dev. 2012, 16, 117–122.
[30] Zhang, Y.; Ciriminna, R.; Palmisano, G.; Xu, Y.-J.; Pagliaro, M. Sol-gel entrapped visible light photocatalysts for selective conversions. RSC Adv. 2014, 4, 18341–18346.
[31] Ciriminna, R.; Delisi, R.; Parrino, F.; Palmisano, L.; Pagliaro, M. Tuning the photocatalytic activity of bismuth wolframate: towards selective oxidations for the biorefinery driven by solar-light. Chem. Commun. 2017, 53, 7521–7524.
[32] Meneguzzo, F.; Ciriminna, R.; Albanese, L.; Pagliaro, M. The energy-population conundrum and its possible solution. arXiv 2016, 1610.07298 [physics.soc-ph].
[33] Zhang, Y. H. P. Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus. Energy Sci. Eng. 2013, 1, 27–41.
[34] Quoted in Stanitski, C. L.; Eubanks, L. P.; Middlecamp, C. H.; Pienta, N. J. Chemistry in Context, 4th Ed., McGraw Hill, Boston, 2003, p. 186.
[35] Meneguzzo, F.; Ciriminna, R.; Albanese, L.; Pagliaro, M. The great solar boom: a global perspective into the far reaching impact of an unexpected energy revolution. Energy Sci. Eng. 2015, 3, 499–509.
[36] Government of India, Ministry of New and Renewable Energy, “Historic low Tariff of Rs. 2.44 per unit discovered in Bhadla Phase-III Solar Park in auction by SECI”, 12 May 2017.
[37] Johnston, I. India cancels plans for huge coal power stations as solar energy prices hit record low. The Independent, 23 May 2017.
[38] Göß, S. Development of negative power prices in Germany,, 19 January 2017.
[39] Wang, J. G.; Yang, J. The Power of Batteries: The Story of BYD. In Who Gets Funds from China’s Capital Market? Eds: Wang, J. G.; Yang, J. Springer, New York, 2013.
[40] Hevel Solar, see at the URL: companies/hevel (last time accessed, May 30, 2017).
[41] Ciriminna, R.; Chavarría-Hernández, N.; Rodríguez-Hernández, A.; Pagliaro, M. Pectin: A new perspective from the biorefinery standpoint. Biofuels, Bioprod. Biorefin. 2015, 9, 368–377.
[42] Fidalgo, A.; Ciriminna, R.; Carnaroglio, D.; Cravotto, G.; Grillo, G.; Tamburino, A.; Ilharco, L. M.; Pagliaro, M. Eco-Friendly Extraction of Pectin and Essential Oils from Orange and Lemon Peels. ACS Sustain. Chem. Eng. 2016, 4, 2243–2251.
[43] Ciriminna, R.; Fidalgo, A.; Delisi, R.; Carnaroglio, D.; Cravotto, G.; Tamburino, A.; Ilharco, L. M.; Pagliaro, M. High-Quality Essential Oils Extracted by an Eco-Friendly Process from Different Citrus Fruits and Fruit Regions. ACS Sustain. Chem. Eng. 2017, 5, 5578–5587.
[44] Ciriminna, R.; Fidalgo, A.; Meneguzzo, F.; Ilharco, L. M.; Pagliaro, M. Extraction, benefits and valorization of olive polyphenols. Eur. J. Lipid Sci. Technol. 2016, 118, 503–511.
[45] Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Olive Biophenols as New Antioxidant Additives in Food and Beverage. ChemistrySelect 2017, 2, 1360–1365.
[46] Ramírez–Anaya, J. del Pilar; Samaniego-Sánchez, C.; Castañeda-Saucedo, Ma. C.; Villalón-Mir, M.; López-García de la Serrana, H. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem. 2015, 188, 430–438.
[47] Delisi, R.; Ciriminna, R.; Arvati, S.; Meneguzzo, F.; Pagliaro, M. Olive Biophenol Integral Extraction at a Two-Phase Olive Mill. J. Clean. Prod. 2018, 174, 1487–1491.
[48] Zaytseva, I. Composition and Quality of Marine Omega–3 Supplements on the Russian and Norwegian Markets: a Comparative Study, Master thesis in International Fisheries Management, The Arctic University of Norway, Faculty of Biosciences, Fisheries and Economics, 2014.
[49] Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Enhancing and improving the extraction of omega–3 from fish oil. Sustain. Chem. Pharm. 2017, 5, 54–59.
[50] Future Market Insights, Essential Fatty Acids Market: Omega–3 Fatty Acid Product Type Segment Likely to Hold Maximum Revenue Share Throughout the Forecast Period: Global Industry Analysis and Opportunity Assessment, 2017–2027, May 2017.
[51] Albanese, L.; Ciriminna, R.; Meneguzzo, F.; Pagliaro, M. Beer-brewing powered by controlled hydrodynamic cavitation: Theory and real-scale experiments. J. Clean. Prod. 2017, 142, 1457–1470.
[52] Albanese, L.; Ciriminna, R.; Meneguzzo, F.; Pagliaro, M. Gluten reduction in beer by hydrodynamic cavitation assisted brewing of barley malts. LWT-Food Sci. Technol. 2017, 82, 342–353.
[53] Pagliaro, M. Advancing nanochemistry education. Chem. Eur. J. 2015, 21, 11931–11936.
[54] Ciriminna, R.; Meneguzzo, F.; Pecoraino, M.; Pagliaro, M. Rethinking solar energy education on the dawn of the solar economy. Renew. Sustain. Energy Rev. 2016, 63, 13–18.
[55] Ciriminna, R.; Pecoraino, M.; Meneguzzo, F.; Pagliaro, M. Reshaping the education of energy managers. Energy Res. Soc. Sci. 2016, 21, 44–48.
[56] Quoted in H. Hartley, Studies in the History of Chemistry, Clarendon Press, Oxford, 1971, p. 85.
[1] Badral Gansukh, Randi Zhang, Jingjing Guo, Wenjuan Zhang, Wen-Hua Sun. Paradox of Late Transition-Metal Catalysts in Ethylene Polymerization[J]. General Chemistry, 2020, 6(1): 190031-190031.
[2] Xiangchao Meng, Zisheng Zhang. Photocatalytic Reduction of N2 for Ammonia Production[J]. General Chemistry, 2019, 5(3): 190006-190006.
[3] Xiangchao Meng, Zisheng Zhang. Acetic Acid Assisted to Prepare Bi2MoO6 with Visible-Light-Induced Activity[J]. General Chemistry, 2017, 3(3): 159-163.
[4] Kezhen Qi, Hanshu Qi, Yubo Xie, Yan Wang. Enhanced Photocatalytic Performance of ZnO through Coupling with Carbon Materials[J]. General Chemistry, 2017, 3(1): 113-117.
Full text



Copyright © General Chemistry, All Rights Reserved.
Address: 425 East 76th Street, Apt 9E, New York, NY, 10021, United States