Please wait a minute...
 Home  Guidelines for Reviewers About the Journal News Editorial Board Aims & Scope Peer Review Policy Subscription Contact us Announcement
Early Edition  //  Current Issue  //  Archives  //  Most Read
General Chemistry    2019, Vol. 5 Issue (2) : 180029-180029     DOI: 10.21127/yaoyigc20180029
Minireviews |
State of the Art on Sb2(S1-x, Sex)3 Thin Film Solar Cells
Thalía Jiméneza, *, C. I. León-Pimentelb, Diego Seuret-Jiméneza, Maykel Courelc
a Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, México;
b Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 48-3, Cuernavaca, Morelos 62251, México;
c Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles (CUValles), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, C.P. 46600, Ameca, Jalisco, México;
Download: PDF(752 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Abstract  The Sb2(S1-x, Sex)3 compound has received considerable attention in photovoltaic applications due to its physical properties and for containing abundant non-toxic elements. However, solar cells based on this material present low efficiencies. In this work, we review some of the physical properties reported for the semiconductors Sb2S3, Sb2Se3 and Sb2(S1-x, Sex)3, and the main techniques of film deposition of the Sb2(S1-x, Sex)3 ternary material along with the reported efficiencies. Finally, a brief review of the scarce theoretical analyses of the main properties of this semiconductor (refractive index, band-gap energy, absorption coefficient and recombination) is presented. This review remarks the need of more theoretical analyses and modeling to optimize and improve the fabrication processes of Sb2(S1-x, Sex)3 solar cells in order to reach better conversion efficiencies.
Keywords Sb2(S1-x      Sex)3 solar cells      thin-film solar cells      deposition techniques      solar cell modeling      semiconductor physical properties     
Fund:Email: (T. J.)
Online First Date: 24 December 2018    Issue Date: 27 June 2019
E-mail this article
E-mail Alert
Articles by authors
a Jimé
C. I. Leó
Diego Seuret-Jimé
Maykel Courel
Cite this article:   
Thalí,a Jimé,nez, et al. State of the Art on Sb2(S1-x, Sex)3 Thin Film Solar Cells[J]. General Chemistry, 2019, 5(2): 180029.
[1] Shah A.; Torres P.; Tscharner R.; Wyrsch N.; Keppner H. Science1999, 285, 692.
[2] Green M. A.; Hishikawa Y.; Dunlop E. D.; Levi D. H.; Hohl-Ebinger J.; Ho-Baillie, A. W. Y. Prog. Photovolt. Res. Appl.2018, 26, 3.
[3] Kuang Y.; Di Vece M.; Rath J. K.; van Dijk L.; Schropp, R. E. I. Rep. Prog. Phys.2013, 76, 106502.
[4] Courel M.;Vigil-Gala?n, O. In Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications, Eds.: Zhang, J.; Jung, Y. G. Chapter 8, Springer, Switzerland, 2018.
[5] Green, M. A. Prog. Photovolt. Res. Appl.2001, 9, 123.
[6] Wang X.; Tang R.; Wu C.; Zhu C.; Chen, T. J. Energy Chem.2017, 27, 713.
[7] Jackson P.; Hariskos D.; Lotter E.; Paetel E.; Wuerz R.; Menner R.; Wischmann W.; Powalla, M. Prog. Photovolt. Res. Appl.2011, 19, 894.
[8] Vigil-Gala?n O.; Courel M.; Andrade-Arvizu J. A.; Sa?nchez Y.; Espíndola-Rodríguez M.; Saucedo E.; Seuret-Jime?nez D.; Titsworth, M. J. Mater. Sci. Mater. Electron.2014, 26, 5562.
[9] Courel M.; Arce-Plaza A.; Oseguera-Galindo D. O.; Vigil-Galán O. Gen. Chem.2018, 4, 180015.
[10] Yi C.; Li X.; Luo J.; Zakeeruddin S. M.; Grätzel M. Adv. Mater.2016, 28, 2964.
[11] Yang R. X.; Butler K. T.; Walsh, A. J. Phys. Chem. Lett.2015, 6, 5009.
[12] León-Pimentel C. I.; Amaro-Estrada J. I.; Saint-Martin H.; Ramírez-Solís, A. J. Chem. Phys.2017, 146, 084307.
[13] Godwin, H. A. Curr. Opin. Chem. Biol.2001, 5, 223.
[14] Casas J.; Sordo J.Chemistry, Analytical Aspects, Environmental Impact and Health Effects, Elsevier, Amsterdam, the Netherlands, 2006.
[15] Darga A.; Mencaraglia D.; Longeaud C.; Savenije T. J.; O’Regan B.; Bourdais S.; Muto T.; Delatouche B.; Dennler, G. J. Phys. Chem. C2013, 117, 20525.
[16] El-Sayad, E. A. J. Non-Cryst. Solids2008, 354, 3806.
[17] Escorcia-García, J. Thin Solid Films 2014, 569, 28.
[18] Yang, B.; Xue D. J.; Leng, M.; Zhong, J.;Wang, L.; Song, H.; Zhou, Y.; Tang, J. Sci. Rep. 2015, 5, 1.
[19] Deng, H.; Yuan, S.; Zhang, J.; Khan, J.; Zhao, Y.; Ishaq, M.; Ye, W.; Cheng, Y. B.; Song, H.; Tang, J. Prog. Photovolt. Res. Appl. 2018, 26, 1.
[20] Kondrotas R.; Chen C.; Tang J. Joule2018, 2, 857.
[21] Wen X.; Chen C.; Lu S.; Li X.; Kondrotas R.; Zhao Y.; Chen W.; Gao L.; Wang C.; Zhang J.; Niu G.; Tang J. Nat. Commun.2018, 9, 1.
[22] Zhang Y.; Li J.; Jiang G.; Liu W.; Yang S.; Zhu C.; Chen T.Sol. RRL 2017, 1700017.
[23] Yang B.; Qin S.; Xue D. J.; Chen C.; He Y. S.; Niu D.; Huang H.; Tang, J. Prog. Photovolt. Res. Appl.2016, 25, 113.
[24] Nair P. K.; Vázquez García G.; Zamudio Medina E. A.; Guerrero Martínez L.; Leyva Castrejón O.;Moctezuma Ortiz J.; Nair, M. T. S. Thin Solid Films2018, 645, 305.
[25] Choi Y. C.; Lee Y. H.; Im S. H.; Noh J. H.; Mandal T. N.; Yang W. S.; Seok, S. I. Adv. Energy Mater.2014, 4, 1301680.
[26] Pérez-Martínez D.; Gonzaga-Sánchez J. D.; De Bray-Sánchez F.; Vázquez-García G.; Escorcia-García J.; Nair M. T. S.; Nair, P. K. Phys. Status Solidi RRL2016, 10, 388.
[27] Jaramillo-Quintero O. A.; Rincón M. E.; Vásquez-García G.; Nair, P. K. Prog. Photovolt. Res. Appl.2018, 26, 709.
[28] Jiménez T.; Seuret-Jiménez D.; Vigil-Galán O.; Basurto-Pensado M. A.; Courel, M. J. Phys. D Appl. Phys.2018, 51, 435501.
[29] Chen G. Y.; Zhang W. X.; Xu, A. W. Mater. Chem. Phys.2010, 123, 236.
[30] Deng Z.; Mansuripur M.; Muscat A. J.Nano Lett. 2009, 9, 2015.
[31] Shockley W.; Queisser, H. J. Appl. Phys.1961, 32, 510.
[32] Polman A.; Knight M.; Garnett E. C.; Ehrler B.; Sinke W. C. Science2016, 352, 6283.
[33] Gao C.; Huang J.; Li H.; Sun K.; Lai Y.; Jia M.; Jiang L.; Liu F. Ceram. Int.2018, 10, 155.
[34] Chen C.; Bobela D. C.; Yang Y.; Lu S.; Zeng K.; Ge C.; Yang B.; Gao L.; Zhao Y.; Beard M. C.; Tang J. Front. Optoelectron.2017, 10, 18.
[35] Liu X.; Xiao X.; Yang Y.; Xue D. J.; Li D. B.; Chen C.; Lu S.; Gao, L; He Y.; Beard M. C.; Wang G.; Chen S.; Tang, J. Prog. Photovolt. Res. Appl.2017, 25, 861.
[36] Validz?ic? I. L.; Mitric? M.; Abazovic? N. D.; Jokic? B. M.; Milos?evic? A. S.; Popovic? Z. S.; Vukajlovic?, F. R. Semicond. Sci. Technol.2014, 29, 035007.
[37] Schneller T.; Waser R.; Kosec M.; Payne D.Chemical Solutio Deposition of Functional Oxide Thin Films, Springer, Springer-Verlag Wien, 2013.
[38] Mane R. S.; Lokhande, C. D. Mater. Chem. Phys.2000, 65, 1.
[39] Hodes G.Chemical Solution Deposition of Semiconductor Films, Marcel Dekker, Inc., New York, 2002.
[40] Nair P. K.; Nair M. T. S.; García, V. M., Arenas, O. L.; Peña Y.; Castillo A.; Ayala I. T.; Gomezdaza O.; Sánchez A.; Campos J.; Hu H.; Suárez R.; Rincón, M. E. Sol. Energy Mater. Sol. Cells1998, 52, 313.
[41] Salem A. M.; Soliman Selim, M. J. Phys. D Appl. Phys.2001, 34, 12.
[42] Shang M.; Zhang J.; Wei S.; Zhu Y.; Wang L.; Hou H.; Fujikawa T.; Ueno N.; Wu, Y. J. Mater. Chem. C2016, 3, 4081.
[43] Messina S.; Nair M. T. S.; Nair, P. K. J. Electrochem. Soc.2009, 156, H327.
[44] Mattox D. M.The Foundations of Vacuum Coating Technology, Noyes Publications/William Andrew Publishing, Norwich, 2003.
[45] Vossen J. L.; Kern W.Thin Film Processes II, Academic Press, Inc., San Dielo, 1991.
[46] Liu X.; Chen J.; Luo M.; Leng M.; Xia Z.; Zhou Y.; Qin S.; Xue D. J.; Lv L.; Huang H.; Niu D.; Tang, J. Appl. Mater. Interfaces2014, 6, 10687.
[47] Liu X.; Chen C.; Wang L.; Zhong J.; Luo M.; Chen J.; Xue D. J.; Li D.; Zhou Yi.; Tang, J. Prog. Photovolt. Res. Appl.2015, 23, 1828.
[48] Chen X.; Li Z.; Zhu H.; Wang Y.; Liang B.; Chen J.; Xu Y.; Mai, Y. J. Mater. Chem. C2017, 5, 9421.
[49] Yuan S.; Deng H.; Dong D.; Yang X.; Qiao K.; Hu C.; Song H.; Song H.; He Z.; Tang, J. Sol. Energy Mater. Sol. Cells2016, 157, 887.
[50] Wang X.; Li J.; Liu W.; Yang S.; Zhu C.; Chen T. Nanoscale2017, 9, 3386.
[51] Zhou Y.; Leng M.; Xia Z.; Zhong J.; Song H.; Liu X.; Yang B.; Zhang J.; Chen J.; Zhou K.; Han J.; Cheng Y.; Tang, J. Adv. Energy Mater.2014, 4, 1301846.
[52] Hu X.; Tao J.; Weng G.; Jiang J.; Chen S.; Zhu Z.; Chu, J. Sol. Energy Mater Sol. Cells2018, 186, 324.
[53] Hu X.; Tao J.; Chen S.; Xue J.; Weng G.; Kaijiang, Hu Z.; Jiang J.; Chen S.; Zhu Z.; Chu, J. Sol. Energy Mater Sol. Cells2018, 187, 170.
[54] Liang G. X.; Zhang X. H.; Ma H.L.; Hu J. G.; Fan B.; Luo Z. K.; Zheng Z. H.; Luo J. T.; Fan, P. Sol. Energy Mater. Sol. Cells2017, 160, 257.
[55] Liang G. X.; Zheng Z. H.; Fan P.; Luo J. T.; Hu J. G.; Zhang X. H.; Ma H. L.; Fan B.; Luo Z. K.; Zhang, D. P. Sol. Energy Mater. Sol. Cells2018, 174, 263.
[56] Wang W.; Chen G.; Wang Z.; Wang K.; Chen S.; Huang Z.; Wang X.; Chen T.; Zhu C.; Kong X. Electrochim. Acta2018, 290, 457.
[57] Ishaq M.; Deng H.; Yuan S.; Zhang Y.; Khan J.; Farooq U.; Song H.; Tang J. Solar RRL2018, 2, 1800144.
[58] Wang W.; Wang X.; Chen G.; Chen B.; Cai H.; Chen T.; Chen S.; Huang Z.; Zhu C.; Zhang Y. Solar RRL2018, 2, 1800208.
[59] Shockley W.; Queisser, H. J. J. Appl. Phys.1961, 32, 510.
No related articles found!
Full text



Copyright © General Chemistry, All Rights Reserved.
Address: 425 East 76th Street, Apt 9E, New York, NY, 10021, the United States