Please wait a minute...
 Home  Guidelines for Reviewers About the Journal News Editorial Board Aims & Scope Peer Review Policy Subscription Contact us Announcement
 
Early Edition  //  Current Issue  //  Archives  //  Most Read
General Chemistry    2018, Vol. 4 Issue (2) : 180010-180010     DOI: 10.21127/yaoyigc20180010
Reports |
Mesogenic Terminal Naphthyl Derivatives with Azomethine/Azo and Ester Central Linkages
H. N. Patel.a, A. K. Prajapatib*()
a Shree Maneklal M. Patel Institute of Sciences & Research, Sector 15/23, Gandhinagar, Kadi Sarva Vishwavidhyalaya, Gandhinagar, India;
b Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara-390002, India
Download: PDF(547 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Two new mesogenic homologous series of naphthalene with different central linkages: (E)-naphthalen-2-yl 4-(4-n-alkoxybenzylideneamino)benzoate (I) and (E)-naphthalen-2-yl 4-(4-n-alkoxyphenylazo)benzoate (II) have been synthesized and characterized by a combination of elemental analysis and standard spectroscopic methods. In series I, all the twelve synthesized compounds exhibit mesomorphism. Methoxy to n-tetradecyloxy derivatives exhibit enantiotropic nematic mesophase. The SmA mesophase commences from n-pentyloxy derivative as an enantiotropic and persists up to the n-hexadecyloxy homologue synthesized. In series II, all the twelve synthesized compounds exhibit enantiotropic nematic mesophase. SmA mesophase commences from n-heptyloxy as monotropy and persist up to the n-hexadecyloxy homologous synthesized. The mesomorphic properties of present series were compared with each other and with a structurally related mesogenic homologous series to evaluate the effects of central linkage on mesomorphism.
Corresponding Authors: A. K. Prajapati   
Online First Date: 11 May 2018    Issue Date: 27 June 2018
0
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
H. N. Patel
A. K. Prajapati
Cite this article:   
H. N. Patel,A. K. Prajapati. Mesogenic Terminal Naphthyl Derivatives with Azomethine/Azo and Ester Central Linkages[J]. General Chemistry, 2018, 4(2): 180010.
URL:  
http://www.genchemistry.org/EN/10.21127/yaoyigc20180010    
Scheme 1  Synthetic route to series I and II compounds.
Compounds R = CnH2n+1
n =
Cr SmA N I
Series I
1 1 ? 144 - - ? 273 ?
2 2 ? 134 - - ? 272 ?
3 3 ? 145 [98.42]c - - ? 251
[1.04]
?
4 4 ? 143 - - ? 260 ?
5 5 ? 132 ? 142 ? 257 ?
6 6 ? 130 ? 160 ? 251 ?
7 7 ? 126 ? 167 ? 237 ?
8 8 ? 122 ? 175 ? 236 ?
9 10 ? 115 ? 181 ? 229 ?
10 12 ? 120 ? 180 ? 228 ?
11 14 ? 100 ? 185 ? 204 ?
12 16 ? 97 ? 187 ?
Series II
13 1 ? 183 - - ? 280 ?
14 2 ? 180 - - ? 277 ?
15 3 ? 173 - - ? 284 ?
16 4 ? 175 - - ? 273 ?
17 5 ? 146 - - ? 270 ?
18 6 ? 145 - - ? 250 ?
19 7 ? 142 (? 140)d ? 237 ?
20 8 ? 138
[66.63]c
? 150
[2.14]
? 220
[1.50]
?
21 10 ? 135 ? 160 ? 211 ?
22 12 ? 121 ? 166 ? 205 ?
23 14 ? 117 ? 165 ? 196 ?
24 16 ? 114 ? 172 ? 193 ?
Table 1  Transition temperatures (°C)a and enthalpies (J/g)b of the series I & II compounds
Figure 1  Microphotograph of (a) schlieren texture of nematic mesophase (series I; n = 14) at 190 ºC and (b) focal conic texture of SmA mesophase (series I; n = 14) at 125 ºC.
Figure 2  The phase behavior for series I compounds.
Figure 3  The phase behavior for series II compounds.
Series No. Mesophase Length Thermal Stabilities Commencement of
Smectic Phase
SmA N SmA N
I 60 48 180 228 5
II 45 39 166 205 7
A 51 41 157 198 7
B 11 68 112 201 10
C 2 3 76 79 12
D Non Mesogenic
E 6 9 62 71 10
Where R = C12H25
Molecular structures of series I, II and A to E
Table 2  The mesophase length, phase transitions, and comparative molecular structure of n-dodecyloxy derivative of series I, II and A to E
1 Demus D.; Zaschke, H. Flussige Kristalle in Tabllen II, VEBDeutscher Verlagfur Grundstoffindustrie, Leipzig, 1984.
2 Vill, V. Liq. Cryst.2.0 Database of Liquid Crystalline Compoundsfor Personal Computers, FijitsuKyushu System(KOS)Ltd., Fukuoka, LCI, Hamburg 1996.
3 Wiegand C. Z. Naturforschung, 1954, B9, 516.
4 Gray G. W.; Jones B.J. Chem. Soc. 1954, 608.
5 Coates D.; Gray, G. W. Mol. Cryst. Liq. Cryst.1978, 41, 197.
6 Dave J. S.; Kurian G.; Joshi, B. C. Liq. Cryst. In Proceedings of the International Conference on Liquid Crystals, Ed.: Chandrasekhar, S., Heyden, London, 1980, p. 54.
7 Dave J. S.; Kurian, G. Mol. Cryst. Liq. Cryst.1977, 42, 193; Pranama, 1975, 1, 427.
8 Dave J. S.; Kurian G.; Prajapati A. P.; Vora, R. A. Mol. Cryst. Liq. Cryst.1971, 14, 307; Curr. Sci. 1972, 41, 415; Indian J. Chem. 1972, 10, 754.
9 Dave J. S.; Prajapati A. P. Pramana. 1975, 1, 735.
10 Dave J. S.; Kurian G.; Prajapati, A. P. Mol. Cryst. Liq. Cryst.1983, 99, 385.
11 Malthete J.; Billard J.; Jacques J.; Rhebald, C. S. Acad. Sci. Paris C, 1975, 281, 333.
12 Hsu H. F.; Lai Y. H.; Lin S. Y.; Lin W. C.; Chen, J. F. Liq. Cryst.2003, 30, 325.
13 (a) Kohout M.; Svoboda J.; Novotná V.; Pociecha D.; Glogarová M.; Gorecka, E. J. Mater. Chem.2009, 19, 3153 (b) Kohout M.; Svoboda J.; Novotná V.; Glogarová, M., Pociecha, D. Liq. Cryst.2010, 37, 987 (c) Kovářová, A.; Kozmík, V.; Svoboda, J.; Novotná, V.; Glogarová, M.; Pociecha, D.Liq. Cryst. 2012, 39, 755.
14 Rahman M. L.; Yusoff M. M.; Hegde G.; Abdul Malek, M. N. F.; Samah N. A.; Srinivasa H. T.; Kumar, S. J. Chin. Chem. Soc.2014, 61, 571.
15 Simion A.; Huzum C. C.; Carlescu I.; Lisa G.; Balan M.; Scutaru, D. J. Serb. Chem. Soc.2015, 80, 673.
16 Kozmík V.; Rodinová E.; Prausová, T. Department of Organic Chemistry, University of Chemistry and Technology Prague, Prague 6, Czech Republic; Svoboda, J.; Novotná V.; Gorecka E.; Pociecha D. Liq. Cryst.2018, 45, 746.
17 Srinivasa H. T. Liq. Cryst.2017, 44, 1384.
18 Rahman M. L.; Hegde G.; Yusoff M. M.; Malek Muhammad, N. F. A.; Srinivasa H. T.; Kumar, S. New J. Chem.2013, 37, 2460.
19 Vora R. A.; Prajapati, A. K. Liq. Cryst.1998, 25, 567.
20 Prajapati, A. K. Mol. Cryst. Liq. Cryst.2000, 348, 65.
21 Vora R. A.; Prajapati, A. K. In Proceeding of the 5th National Seminaron Liquid Crystals, Patiala, India, 1996, p. 97.
22 Prajapati A. K. Liq. Cryst.2000, 27, 1017.
23 Prajapati A. K.; Pandya, H. M. Mol. Cryst. Liq. Cryst. 2003, 393, 31; Prajapati, A. K.; Pandya, H. M.; Bonde, N. J. Chem. Sci. 2004, 116, 227.
24 Jadav N. D.; Prajapati B. A.; Prajapati, A. K. Mol. Cryst. Liq. Cryst.2003, 399, 53.
25 Prajapati A. K.; Thakkar V.; Bonde, N. Mol. Cryst. Liq. Cryst.2003, 93, 41.
26 Teucher I.; Paleos C. M.; Labes, M. M. Mol. Cryst. Liq. Cryst.1970, 11, 187.
27 Hoshino N. Coord. Chem. Rev.1998, 174, 77.
28 Ed.: Serrano, J. L. Metallomesogens: Synthesis, Properties and Applications, Wiley-VCH, Weinheim, Germany, 1996.
29 Bruce, D. W. Inorganic Materials, Bruce, D. W.; O’Hare, D. 2nd Edn, Wiley, Chichester, 1996, p. 429.
30 Giroud-Godquin, A. M. In Handbook of Liquid Crystals. Vol. 2B, Eds.: Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H. W.; Vill, V. Chapter XIV, Wiley-VCH, Weinheim, Germany, 1998.
31 Donnio B.; Bruce, D. W. Struct. Bond. 1999, 95, 193.
32 Prajapati A. K.; Bonde N. Liq. Cryst.2006, 33, 1189.
33 Patel H. N.; Prajapati, A. K. Mol. Cryst. Liq. Cryst.2017, 643, 106.
34 Gray G. W.; Jones B.J. Chem. Soc. 1954, 1467.
35 Dave J. S.; Patel, P. R. Mol. Cryst. Liq. Cryst.1966, 2,115.
36 Hassen A.; Alexanian V.Tetrahedron Lett. 1978, 4475.
37 Jadav, N. D. Ph.D. Thesis, The M. S. University of Baroda, Vadodara, India, 1979.
38 Hornreich R. M.; Shtrikman, S. Phys. Rev. A 1981, 24, 605; 1983, 28, 1791.
39 Stegmeyer H.; Porshch, F. Phy. Rev. A 1984, 30, 3369; Liq. Cryst. 1987, 2, 395.
[1] . Contents: Gen. Chem. 1/2019[J]. General Chemistry, 2019, 5(1): 199001-199001.
[2] Mingguang Pan, Jianxin Zou. High Performing CO2 Capture by Smart Strategies in Functionalized Ionic Liquids[J]. General Chemistry, 2019, 5(1): 180018-180018.
[3] Zhe Chen, Zhibin Ye. Effects of Nitric Acid Activation on Textural, Surface, and Supercapacitive Properties of Ultra-Small Carbon Nanospheres[J]. General Chemistry, 2019, 5(1): 180023-180023.
[4] Qin Xu, Yan-Mei Tan, Bao-Yi Ren, Meng-Jiao Wang, Ya-Guang Sun, Zhong-Min Su. Recent Progress of Nonfullerene Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells[J]. General Chemistry, 2019, 5(1): 180025-0.
[5] Dongqin Su, Zehua Tang, Jinfeng Xie, Zhengxu Bian, Junhao Zhang, Aihua Yuan. High Performance Layered Inorganic Flame Retardants: a Review[J]. General Chemistry, 2019, 5(1): 180021-180021.
[6] Bao-Yi Ren. Interview with Dr. Bao-Yi Ren[J]. General Chemistry, 2019, 5(1): 198002-198002.
[7] . Contents: Gen. Chem. 3/2018[J]. General Chemistry, 2018, 4(3): 189003-189003.
[8] Mengfan Wang, Qian Tao, Bo Liu, Chengchao Li, Libao Chen, Chenglin Yan. On-Chip, Mediator- and Membrane-Less Micro-Glucose Biofuel Cells Based on Layer-by-Layer Reduced Graphene Oxide-Enzyme Hybrids[J]. General Chemistry, 2018, 4(2): 180001-180001.
[9] M. A. Vijayalakshmi, Kishore K. R. Tetala. Nanomaterial Fused Monolithic Microcolumns for Biomolecule Separation[J]. General Chemistry, 2018, 4(2): 180014-180014.
[10] . Contents: Gen. Chem. 2/2018[J]. General Chemistry, 2018, 4(2): 189002-189002.
[11] Haijin Liu, Peiyao Li, Haokun Bai, Cuiwei Du, Yuzhao Su, Dandan Wei, Yuqian Wang. Enhanced Adsorption and Photocatalysis by Introduction of C into N, Zr/TiO2[J]. General Chemistry, 2018, 4(2): 180008-180008.
[12] Chenglin Yan, Qiwei Tian. Magnetic Resonance Switch for Biological Detection[J]. General Chemistry, 2018, 4(1): 170019-170019.
[13] . Contents: Gen. Chem. 1/2018[J]. General Chemistry, 2018, 4(1): 189001-189001.
[14] Ye Liu, Jun Yuan, Věra Cimrová, Yingping Zou. Conjugated Polymers for NIR-I and NIR-II Imaging[J]. General Chemistry, 2018, 4(1): 170021-170021.
[15] A. R. Yuvaraj, Sandeep Kumar. Writing with Light: Recent Advances in Optical Storage Property of Azobenzene Derivatives[J]. General Chemistry, 2018, 4(1): 170020-170020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
沪ICP备15041762号-2
Copyright © General Chemistry, All Rights Reserved.
Address: 425 East 76th Street, Apt 9E, New York, NY, 10021, United States